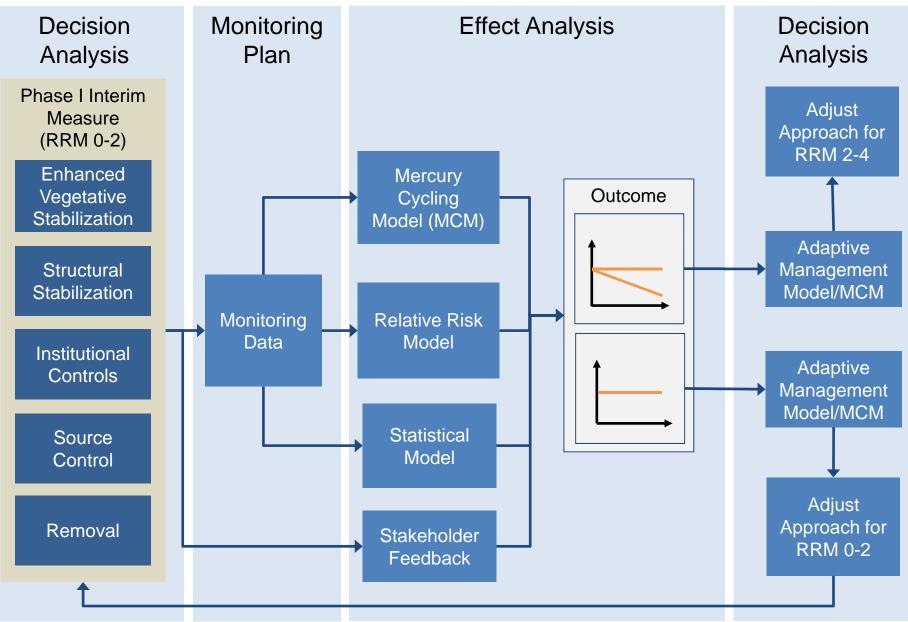

# Objectives

- Describe how the various models in use for AOC 4 can be integrated in the Enhanced Adaptive Management (EAM) Framework
- Identify data inputs for various models to identify missing/inadequate data
- Define goals, scope and construction of a simulated data set to test models


#### Model Integration: General Relationships

#### • EAM Key Requirements:

- Decision analysis to prioritize management strategies given objectives and uncertainties in the future states
- *Effects analysis* to define potential range of future states
- Monitoring plan to collect data that informs management decisions about key conditions



### Model Integration: Detailed Example



#### EAM Input Summary Matrix

| EAM Input                        | Objective                                                                                                                        | Spatial Scale                                                                                                 | Data Input                                                                                                                                                                                    | Data Output                                                                                                               |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| Relative Risk Model              | -Assess the<br>relative threat posed by different<br>risk sources, and their stressors,<br>to selected endpoints in AOC 4.       | Risk regions:<br>RRM -3.4 to 1.6<br>RRM 1.6 to 7.2<br>RRM 7.2 to 15.1<br>RRM 15.1 to 24.1<br>RRM 24.1 to 32.2 | -Avian <sup>1</sup> blood MeHg<br>-Habitat<br>-Air, water temperature<br>-Fish <sup>2</sup> tissue THg<br>-Water quality <sup>3</sup>                                                         | -Numeric score indicating<br>relative importance of different<br>risks to the endpoints in risk<br>regions                |  |  |
| Dynamic Mercury<br>Cycling Model | -Predict and assess THg loading<br>reductions due to bank<br>stabilization<br>-Interpret monitoring data<br>-Address uncertainty | RRM 0 to 25                                                                                                   | -THg and MeHg loading <sup>4</sup><br>-Water quality <sup>5</sup><br>-Sediment THg and MeHg, physical<br>parameters <sup>6</sup> , cores<br>-Pore Water THg, MeHg, DOC<br>-Food Web THg, MeHg | -Predictions of THg and MeHg<br>concentrations in abiotic and<br>biotic media over various<br>spatial and temporal scales |  |  |
| Statistical Model                | -Predict the effect of bank<br>stabilization on mercury<br>concentrations in other<br>environmental compartments                 | RRM 0 to 2 (currently)                                                                                        | -Precipitation, discharge<br>-THg and MeHg in surface water,<br>sediment, biota<br>-Bank erosion and THg loading<br>-Geomorphology                                                            | -Surface water THg and MeHg<br>-Sediment THg<br>-Smallmouth bass THg                                                      |  |  |

Notes:

EAM: Enhanced Adaptive Management

**RRM: Relative River Mile** 

MeHg: Methylmercury

THg: Total mercury

DOC: Dissolved organic carbon

<sup>1</sup>Kingfisher, Carolina Wren

<sup>2</sup>Smallmouth Bass, White Sucker

<sup>3</sup>Water Quality, Fishing/Swimming/Boating River Use

<sup>4</sup>Includes surface water loading and bank loading

<sup>5</sup>THg, MeHg, DOC, temperature, pH, total suspended solids

<sup>6</sup>Grain Size, organic carbon, bulk density/porosity

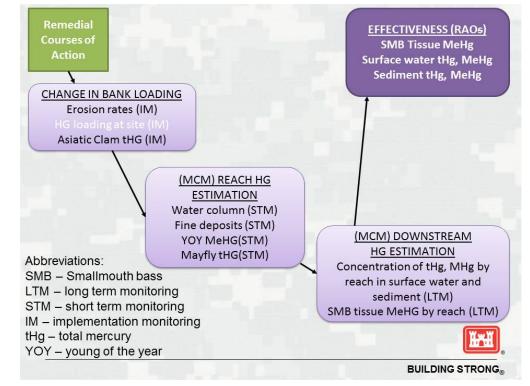
# **Relative Risk Model Inputs**

- Many redundancies
- Endpoints can be simplified:
  - Mercury in adult fish
  - Water quality:
    - Temperature/DO
    - Discharge
    - Bacteria

| RRM                        | Parameters of          | Number of |                                    |     |     |            |       |
|----------------------------|------------------------|-----------|------------------------------------|-----|-----|------------|-------|
| Endpoint                   | Importance             | Regions   | Monitoring Parameters Required     | LTM | DEQ | USGS       | Other |
| Belted<br>Kingfisher       | Mercury                | 5         | Blood samples                      |     |     |            |       |
|                            | Fish Length            | 5         |                                    |     |     |            |       |
|                            | Potential Habitat      | 2         | Land use type                      | >   |     |            |       |
|                            | Territory              | 3         | Nests per length of river section  |     |     |            |       |
| Carolina Wren              | Mercury                | 4         | Blood samples                      | ~   |     |            |       |
|                            | Nest Predation         | 5         |                                    |     |     |            |       |
|                            | Potential Habitat      | 2         | Land use type                      | ~   |     |            |       |
|                            | Winter Air Temperature | 4         |                                    |     |     |            | ~     |
| Smallmouth                 | River Temperature      | 5         |                                    |     |     | ✓ 1        |       |
| Bass                       | Mercury                | 5         | Fish fillet mercury concentrations | ~   | ~   |            |       |
| White Sucker               | River Temperature      | 5         |                                    |     |     | <b>v</b> 1 |       |
|                            | Stream Cover           | 5         | Submerged aquatic vegetation cover | >   |     |            |       |
|                            | Mercury                | 4         | Fish fillet mercury concentrations |     | >   |            |       |
|                            | Organic Contaminants   | 1         |                                    |     |     |            |       |
| Water Quality<br>Standards | Dissolved Oxygen       | 5         | Summer dissolved O2                | ~   |     |            |       |
|                            | Bacteria               | 4         | Bacteria indicators                |     | ~   |            |       |
|                            | River Temperature      | 3         | Winter temperature                 |     |     | <b>v</b> 1 |       |
|                            | River Discharge        | 3         | Summer & winter discharge          |     |     | <b>v</b> 1 |       |
| Fishing River<br>Use       | Dissolved Oxygen       | 5         | Summer dissolved O2                | ~   |     |            |       |
|                            | Methyl Mercury         | 4         | Fish fillet MeHg concentrations    | ~   |     |            |       |
|                            | River Temperature      | 5         | Summer & winter temperature        |     |     | ✓ 1        |       |
| Swimming<br>River Use      | Bacteria               | 4         | Bacteria indicators                | ~   |     |            |       |
|                            | River Temperature      | 5         | Summer & winter temperature        |     |     | ✓ 1        |       |
|                            | River Discharge        | 1         | Summer discharge                   |     |     | ~          |       |
| Boating River<br>Use       | River Temperature      | 5         | Summer & winter temperature        |     |     | ✓ 1        |       |
|                            | Bacteria               | 4         | Bacteria indicators                |     | ~   |            |       |
|                            | River Discharge        | 1         | Winter discharge                   |     |     | ~          |       |

Data are of sufficient spatial and temporal resolution Data lack spatial or temporal adequacy Data will not be collected

<sup>1</sup>Data are predicted for the South River based on USGS gage in Smith Creek near New Market.


### Data Inputs: Mercury Cycling Model

- Time-dependent
   mechanistic model
- Predicts the cycling and bioaccumulation of MeHg, Hg(II), and Hg(0)
- Critical component of adaptive management model

| Discharge             | <b>v</b>              |
|-----------------------|-----------------------|
| Loading Rates         |                       |
| Bank loading rates    | <b>~</b>              |
| Outfall loading       | <ul> <li>✓</li> </ul> |
| Water quality         |                       |
| THg, MeHg             | ✓                     |
| DOC                   | ✓                     |
| Т                     | <b>~</b>              |
| рН                    | ✓                     |
| TSS                   | ✓                     |
| Sediment              |                       |
| THg, MeHg             | ✓                     |
| Grain Size            | ✓                     |
| Organic carbon/LOI    | ✓                     |
| Bulk density/porosity | <b>~</b>              |
| Cores                 | ✓                     |
| Pore Water            |                       |
| DOC                   | <b>v</b>              |
| THg, MeHg             | ✓                     |
| Food Web              | ~                     |

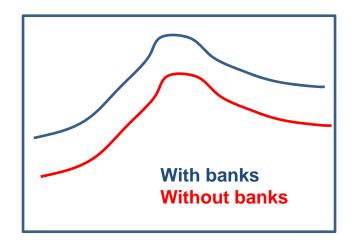
# Data Inputs: Enhanced Adaptive Management Model

- Model inputs:
  - Bank loading
  - Bass tissue
  - Surface water THg and MeHg
  - Sediment THg and MeHg
  - Benthic community condition
- Requires mass balance model (e.g., MCM)



# Data Inputs: Statistical Model

- Stepwise regression on large number of factors:
  - Surface water, sediment, and floodplain mercury are basic elements of all models
  - River is dynamic system, with surface water, sediment, floodplain, discharge, rainfall, pore water, etc. interacting
- Pros and cons:
  - + No theoretical mechanistic model is force fit to the data
  - + Statistical modeling attempts to evaluate all data for relevance
  - There may be no framework by which to explain the associations


# Simulated Data Set: Goals and Approach

- Goals:
  - Provide data to test
     EAM/MCM and RRM
  - Simulate potential postremediation conditions in the South River
  - Identify missing, inadequate, or redundant data
  - Test statistical power of monitoring plan elements

- Approach:
  - Use statistical model to predict reductions for different remedial alternatives
  - Test response to various % reductions in bank THg loading in river reaches

# Simulated Data Set Results

- Predict effect of bank THg loading reductions on:
  - YOY bass
  - Surface water mercury
    - IHg, MeHg
    - Total, filtered, particulate
  - Interstitial sediment THg and MeHg
- Time to achieve effect(s) unknown
- Future runs may include clams, mayflies, spiders or other data



**Relative River Mile**