


Dynamic Biogeochemistry of Mercury in the Near Bank Soil Zone

Olesya Lazareva and Donald L. Sparks (University of Delaware)

South River Science Team Expert Panel Meeting
October 9, 2013

#### Program Update at RRM 3.5, South River, VA

- Collected and analyzed 6 soil cores including duplicates (57 soil samples total)
- Installed redox, soil moisture/temperature probes and pressure transducers (water level, temperature and conductivity)
- Downloaded and analyzed continuous data set for about 5 months
- Installed, developed and sampled piezometers and stream water





## Soil Sampling and Installation of Sensors: February 2013



#### **Installation of Sensors and Piezometers: April-May 2013**



#### Water Sampling: July 2 and October 1, 2013

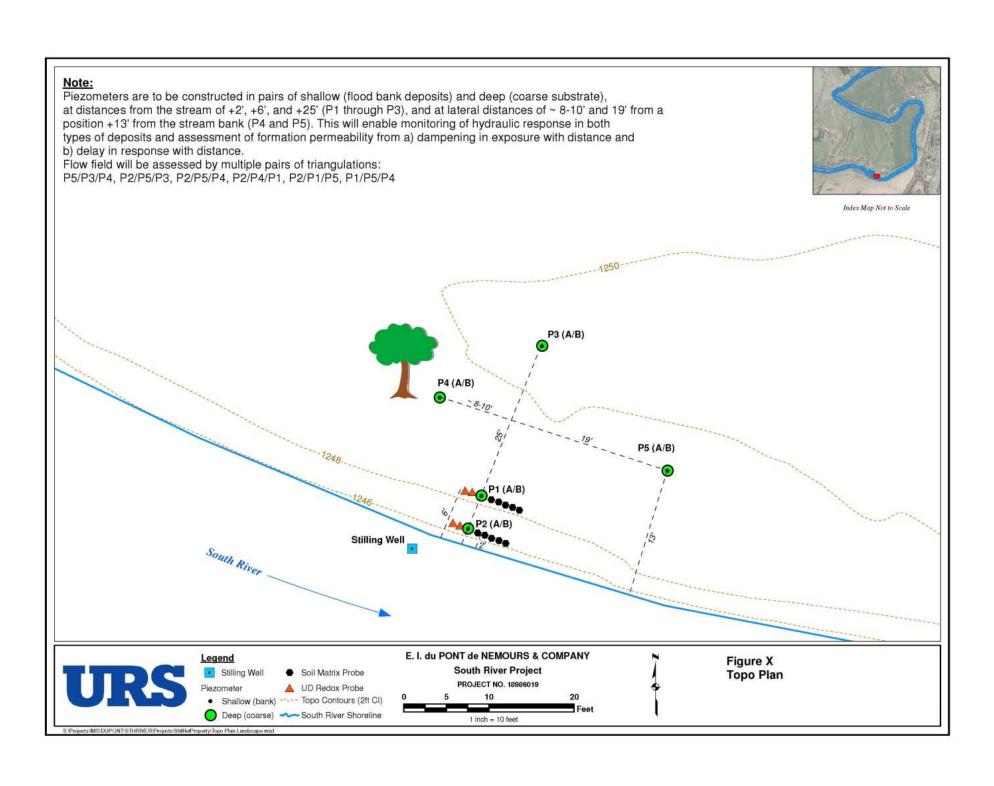


Collected and field filtered (0.45 um) water samples from piezometers and stream for:

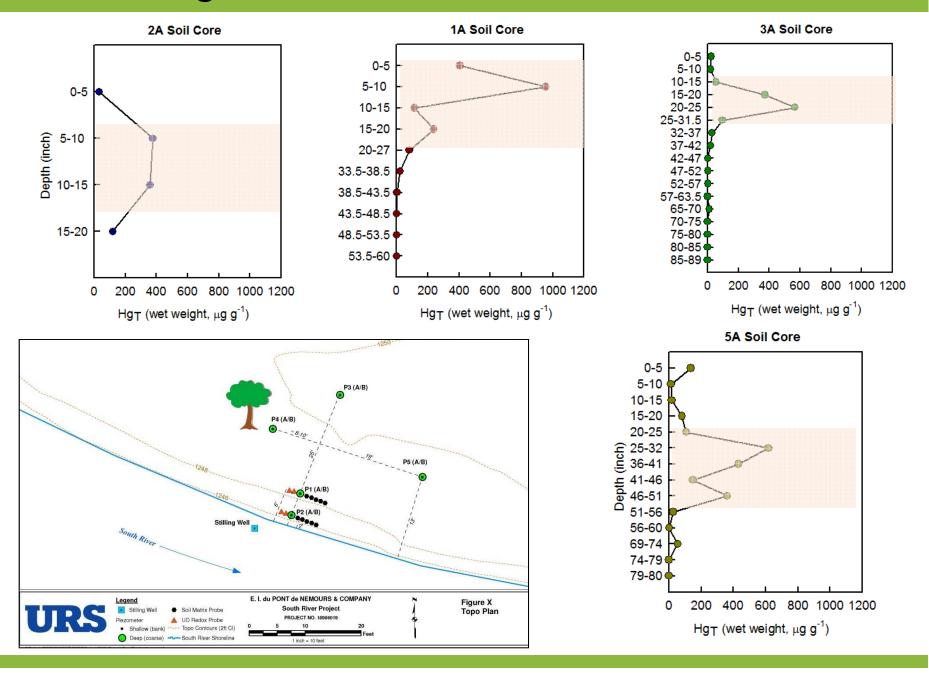
CHEMetrics V-2000

Multi-Analyte

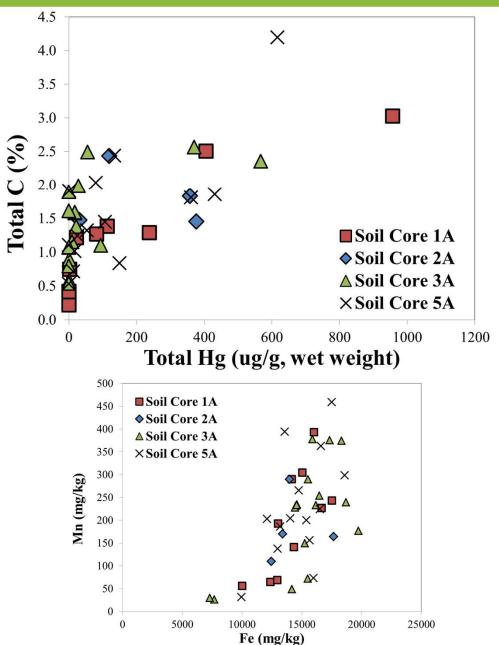
Photometer

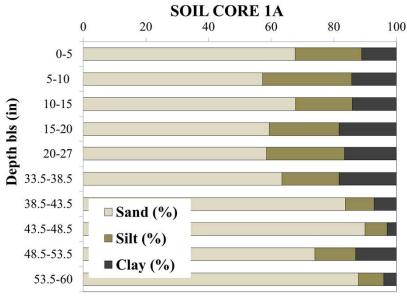

- MeHg
- THg
- DOC
- Fe, Mn, Na
- Alkalinity
- Ammonia-N
- Total P
- δ¹8O and δD





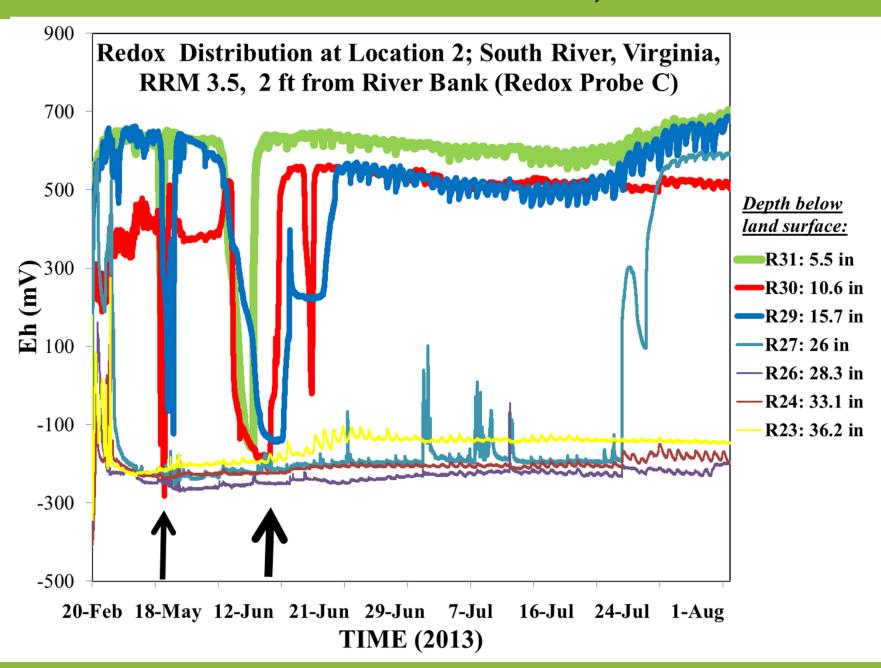

| Samples | Date               | Time     | рН  | Temp | Cond  | ORP    | DO     | S <sup>2-</sup> | Fe <sup>2+</sup> | Mn       |
|---------|--------------------|----------|-----|------|-------|--------|--------|-----------------|------------------|----------|
|         |                    |          |     | °C   | mS/cm | mV     | mg/L   |                 |                  |          |
| Stream  | 7/2/2013           | 7:10 PM  | 7.8 | 20.5 | 0.2   | -69.6  | 7.3    | 0.1             | 0.0              | <u>.</u> |
| Stream  | 10/1/2013          | 5:10 PM  | 8.1 | 18.9 | 0.3   | -67.6  | 11.9   | 0.1             | 0.1              | 0.1      |
| P2-B    | 7/2/2013           | 5:26 PM  | 6.9 | 17.6 | 0.4   | -62.0  | 2.4    | 0.1             | 4.3              |          |
| P2-B    | 10/1/2013 no water |          |     |      |       |        |        |                 |                  |          |
| P1-B    | 7/2/2013           | 5:56 PM  | 7.1 | 15.9 | 0.3   | -56.0  | 2.0    | 0.1             | 3.6              |          |
| P1-B    | 10/1/2013          | 1:30 PM  | 6.9 | 19.0 | 0.4   | -113.1 | 2.9    | 0.3             | 7.1              | 6.0      |
| P3-A    | 7/2/2013           | 4:05 PM  | 6.9 | 18.0 | 0.9   | -111.7 | 3.2    | 0.1             | 28.4             |          |
| P3-A    | 10/1/2013 no water |          |     |      |       |        |        |                 |                  |          |
| P3-B    | 7/2/2013           | 3:00 PM  | 7.0 | 16.8 | 0.5   | -68.9  | 1.5    | 0.1             | 7.1              |          |
| P3-B    | 10/1/2013          | 11:00 AM | 6.9 | 18.2 | 0.5   | -118.2 | 4.9    | 0.1             | 11.7             | 3.3      |
| P4-B    | 7/2/2013           | 4:41 PM  | 7.3 | 16.8 | 0.5   | -110.3 | 2.0    | 0.1             | 0.9              |          |
| P4-B    | 10/1/2013          | 4:00 PM  | 6.9 | 18.9 | 0.5   | -106.1 | 6.2    | 0.1             | 4.0              | 4.9      |
| P5-B    | 7/2/2013           | 6:27 PM  | 7.1 | 15.4 | 0.5   | -108.9 | 0.5    | 0.4             | 6.4              | <u> </u> |
| P5-B    | 10/1/2013          | 5:10 PM  | 7.0 | 19.2 | 0.4   | 28.3   | -110.1 | 0.2             | 12.3             | 4.0      |


<sup>\*</sup> Majority of shallow wells were dry

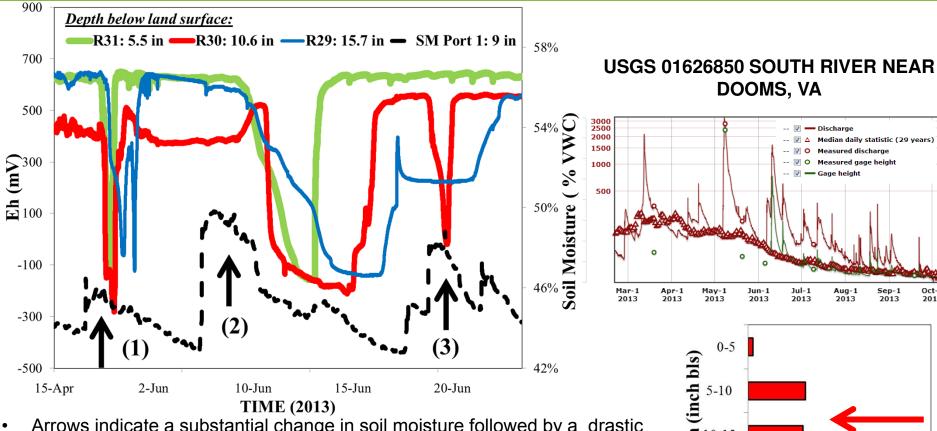



## **Total Hg Concentration in Soils at 3.5 RRM**

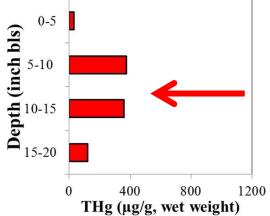



### **Soil Chemistry**

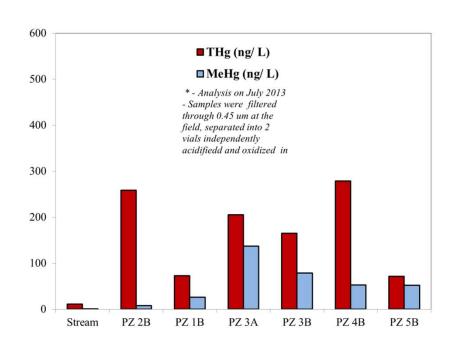


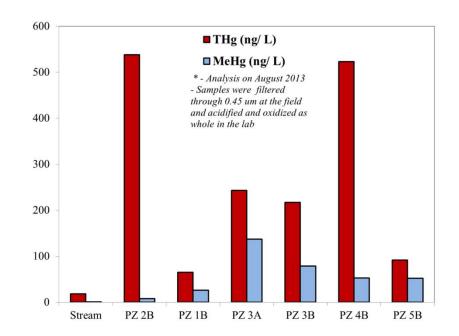






#### Redox and Soil Moisture: Location 2 at 3.5 RRM; 2 ft from River Bank




#### Redox and Soil Moisture: Location 2 at 3.5 RRM; 2 ft from River Bank




- Arrows indicate a substantial change in soil moisture followed by a drastic redox response due to heavy rainfall and overbank flooding (1, 2 and 3).
- Strong precipitation on May 8 caused sharp and short redox gradient for several days; Less severe precipitation starting June 11 facilitated more sustained response of the redox change, although the redox dropped to the comparative levels.
- There is a defined lag in redox response depending on soil depth.
- Steady rainfall and slow soil saturation causing the prolonged redox response in June could be more effective in Hg mobilization/MeHg production but this have to be verified with the additional water sampling.



# Preliminary Water Chemistry Including Hg and MeHg in Piezometers and Stream: Sampling on July 2, 2013 at 3.5 RRM





| Sample |      |         |             |           |           |      |      |     |                        |       |
|--------|------|---------|-------------|-----------|-----------|------|------|-----|------------------------|-------|
| ID     | Cl-  | Total P | $SO_4^{2-}$ | $NO_3$ -N | $NO_2$ -N | Fe   | Na   | Mn  | $NH_{3} \\$            | T Alk |
|        |      |         |             | m         |           |      |      |     | mgCaCO <sub>3</sub> /L |       |
| Stream | 8.1  | 0.1     | 9.1         | 0.8       | 0.4       | 0.0  | 5.8  | 0.0 | 0.1                    | 94    |
| PZ 2B  | 10.0 | 0.1     | 8.5         | 0.3       | 0.4       | 4.8  | 9.0  | 2.6 | 0.4                    | 185   |
| PZ 1B  | 9.1  | 0.1     | 5.8         | 0.3       | 0.4       | 3.7  | 5.5  | 1.4 | 0.4                    | 174   |
| PZ3A   | 53.4 | 0.1     | 29.7        | 0.3       | 0.4       | 24.1 | 23.0 | 5.0 | 2.7                    | 423   |
| PZ 3B  | 12.0 | 0.1     | 4.4         | 0.3       | 0.4       | 7.7  | 9.9  | 2.6 |                        | 265   |
| PZ 4B  | 9.5  | 0.1     | 9.3         | 0.3       | 0.4       | 0.5  | 7.4  | 1.2 | 0.1                    | 185   |
| PZ 5B  | 19.4 | 0.1     | 6.2         | 0.3       | 0.4       | 9.6  | 13.8 | 5.0 | 0.4                    | 303   |

