

Does Sorbent Influence Detrital Processing? Efficacy of Sorbent with Time (Bioaccumulation)?

Design Optimized to Detect Effect on Detrital Processing

- One week, and again 1.5, 3, and 6 months after adding material
- Cowboy brand biochar or Sedimite

Change in mean amphipod leaf processing rate during 10 day assay

Design Also Permitted Assessment of Amendment Efficacy

- One week, and again 1.5, 3, and 6 months after adding material
- Cowboy brand biochar and Sedimite

Change in mean amphipod mercury concentration at end of 10 day assay

Expand our previous study with Sedimite that found:

- mercury in sediment decreased detrital processing
- amending with Sedimite modified detrital processing
- amending sediments influenced bioaccumulation

Extended Ageing classes:

Extended from only 1st week to also 1.5, 3, and 6 months after amending sediments. Quantify effects of ageing.

Extended treatment classes:

No sediment/only leaf disc & amphipod
North Oak Lane (low Hg), not amended***
North Oak Lane, amended with biochar
North Oak Lane, amended with Sedimite ***
Dooms Crossing (high Hg), not amended ***
Dooms Crossing, amended with biochar
Dooms Crossing, amended with Sedimite ***

*** treatments also used in the Bunschuh et al. 2011 study.

Experimental Treatments

North Oak Lane (Above historic source, 0.038 µg Hg/g dw)

Unamended Sediment (n=30)

Biochar Amended Sediment (n=30)

Sedimite Amended Sediment (n=30)

Dooms Crossing (Below historic source, 8.1 µg Hg/g dw)

Unamended Sediment (n=30)

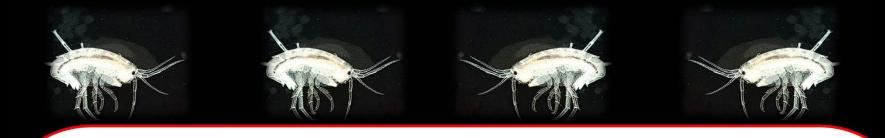
Biochar Amended Sediment (n=30)

Sedimite Amended Sediment (n=30)

Assay Negative Control (leaf disk only, n=30)

Quantify change in weight of leaf disk due to leaching for 10 days

Assay Positive Control (amphipod and leaf disk, n=30)

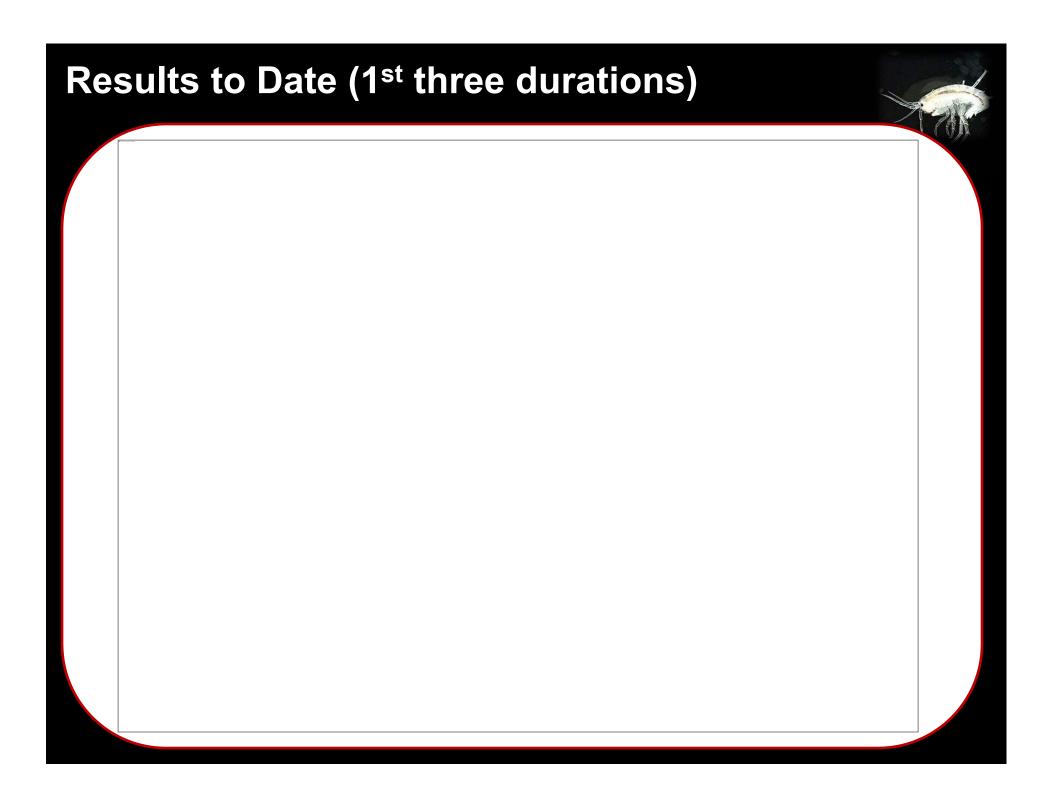

March/April 2013 Sampling

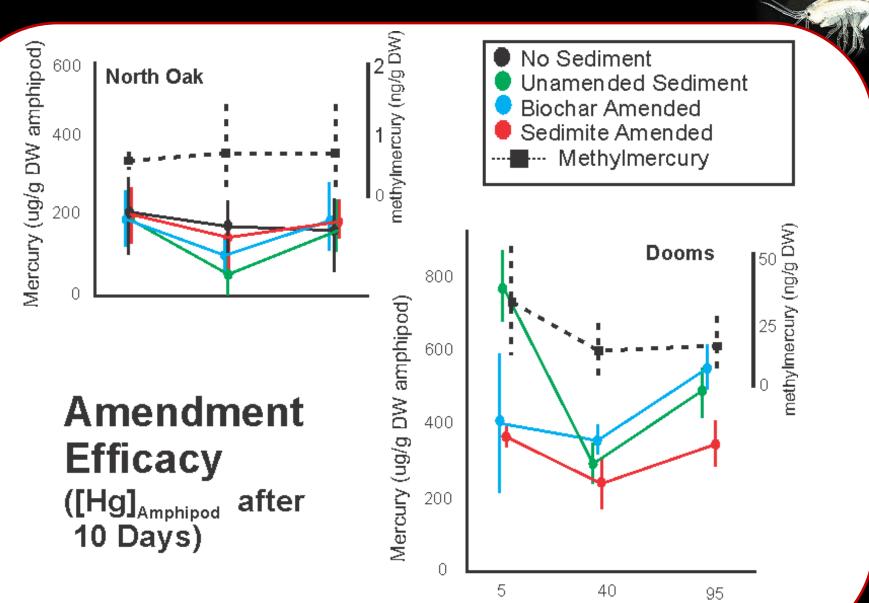
Dooms Crossing North Oak Lane

GENERAL CHARACTERISTICS OF MATERIALS

Mercury Concentration (ug/kg dry wgt)

Material	Mean	Std Dev	95% CI	N
Leaf Disc	0.0044	0.0013	.00300060	5
Biochar	0.4693	0.0978	.348591	5
Sedimite	3.875	0.0562	3.805-3.945	5
North Oak Sediment	37.8	1.9	36.4-39.1	10
Dooms Sediment	8121	286	6991.0-9251.0	14
Sediment Ashing Wgt Loss (%)				
North Oak Sediment	9.02	0.86	7.95-10.09	5
Dooms Sediment	8.79	2.61	5.55-12.03	5


Amended and Unamended Sediment, Weighed Leaf Disks and 6-well Plates for Assays


Assay Set Up

Dooms sediment [Hg] of 8 ug/g Leaf Sediment Alone Less than 10 ug/g [Hg] impacting rates in first study. Any effect is that of the biochar +Sedimite +Biochar or Sedimite

AT END Leaf Disk Wgt [Hg]_{Amphipods}

Results to Date (1st three durations)

Time Post-Mixing (Days)

Preliminary Observations

- Sedimite , but not biochar, reduced detrital processing for all assay periods and sediment types.
- Biochar efficacy transient?
- Sedimite efficacy more presistent?

Planned Approach to Data Analysis (Beyond 95% confidence intervals)

Bayes Factor

The support (expressed as a probability) of one hypothesis provided by the data divided by the support for the alternative hypothesis.

P-valueMin BFStrength of Evidence			
0.10	0.26	Weak	
0.05	0.15	Moderate	
0.03	0.095	Moderate	
0.01	0.036	Moderate/Strong	
0.001	0.005	Strong/Very Strong	

Minimum BF

Simple convention of placing the most probable hypothesis in denominator of $p(H_1)/p(H_2)$

Example (First Assay, Influence of Amending Sediments on Bioaccumulation)

Unamended Sediment vs Biochar Amended

Conventional t-test p-value of 0.003 Minimum BF of 0.03, i.e., moderate support

Unamended Sediment vs Sedimite Amended

Conventional t-test p-value of 0.0001 Minimum BF of 0.0002, i.e., very strong support

Biochar vs Sedimite Amended

Conventional t-test p-value of 0.6043 Minimum BF of .446, i.e., very poor support