South River - South Fork Shenandoah Conceptual Model and Hydrology Update

South River Science Team Meeting December 11, 2001 N R Grosso

1

Conceptual System Model (CSM)

- Representation of the South River environmental system
- Presents hypotheses about the physical, biological and chemical processes that determine the transport of contaminants from sources through receptors
- Tests and refines hypotheses through characterization to define <u>complete</u> pathways
- Complexity of the CSM is determined by the complexity of the system
- CSM is "evergreen"

Uses of CSM

- Integrate all data and identify data needs
- Identify critical complete pathways
 - Identify remedial strategy options
 - Evaluate effectiveness of potential options to reduce exposure of receptors to contaminants
 - Evaluate implemented action's effectiveness
- Communication tool
 - among scientists and decision-makers
 - stakeholders

CSM - South River Summary

Potential Primary Secondary Sources	Release/transport Mechanisms	Potential Sources Exposure media	Exposure Routes	Potential Receptors
Waynesboro Plant Hg Recovery Unit (1929-1950) Soil, Storm Sewers, River Bank Soils, Groundwater, Permitted Outfalls Municipal Histor. Landfill, WWTP, POTW Other Industry Atmospheric (ambient)	Spills, Combustion/Air Leaching, Stormwater Runoff, Surface water flow, Sediment movement, Storm events, Biogeo-Chemical changes	Soils Surface Water, Sediments, Wetland areas, Mill Ponds, Isolated Pools, Floodplain Soils, Upland Soils	Direct: Ingestion, Inhalation, Dermal Indirect: Food (fish) Bioaccumlation Direct: Ingestion, Inhalation, Dermal	Human Ecological

Components of Conceptual System Models

- Historic and current sources (magnitude and duration)
- Regional and local groundwater
- Watershed hydrology and water balance
- Sediment transport and deposition
- Distribution of Hg in the environmental compartments
- Exposure assessment
- Contaminant transport mechanisms and transformation
 - transport in dissolved phase or as particulates
 - Hg fate and cycling
- Hg uptake and food web modeling
- Conceptualization of remedial strategy

Biogeochemical Cycling of Hg in the Environment

Hydrology Question Currently Facing the Science Team

- Are some of the spatial patterns we see in fish tissue influenced by dilution effects in the river (e.g. from outfalls, tribs, etc.)
- Is there an on-going source to the river and if so, can the hydrology help to identify its origin?

Approach

- Review available data
 - Compute a rough water balance using two different methods and compare
 - Estimate proportional contributions to the river flow from overland runoff, tributaries and springs, groundwater, and permitted outfalls.
 - Estimate using annual precipitation in the watershed P = R + ET + I + GW

South River Hydrology Watershed Attributes

- Valley and Ridge Physiographic Province
 - Ridges Clastics and metamorphics
 - Valleys Carbonates
 - Quaternary Sediments
 - Terrace deposits (sand and silt), High-level terrace and alluvial fan deposits (gravel and sand in a red clay matrix)
- River and flood plain generally constrained by valley walls and urbanization
- "Riffle and Pool" river
- Land use: 65% forested, 30% agriculture, 5% urban
- Annual Precipitation 43.16"
- Annual Runoff 12" to 19"

South River Water Flow Statistics through 1996

- Surface Water Flow at Waynesboro Sta.
 - Mean daily flow ranges from 22 cfs to 2,100 cfs
 - Mean annual flow 149 cfs (70% time flow is greater)
 - Lowest annual mean was 47.5 cfs
 - Highest annual mean was 265 cfs
 - Base flow is approximately 28 cfs

Flow Analysis South River

pprox.	Landmark /	Annual	Cumulative	Approx.	Tributaries	Ratio	% Base
River	Gauging Station	Mean	Drainage Area	Base	(D.A, sq. mi.)	mean flow	Flow
Mile		Flow (cfs)	(D.A., sq. mi.)	flow		to D.A.	
29.0	Lynnwood	1,033	1084	250		0.95	15.5
24.9	Confluence w/North		235				
	R.						
					Miller Run (4.9)		
21.3	Grand Caverns		222.7				
19.5					Stull Run (2.5)		
17.0	Harriston	262	212	43		1.2	16.4
16.4					Paine Run (6.8)		
14.5					Meadow Run (5.7)		
10.2					Mine Branch (4)		
					Tunnel Branch (1.7)		
7.5					Porterfield (5.8)		
5.2					Saw Mill Run (10.3)		
2.6	Hopeman Pkwy	214	149	52		1.4	24.3
1.0					Steel Run (5.1)		
					Lothe Spring		
-2.9	WaynesboroGauge	149	127	28		1.2	18.8

Initial Water Analysis

- Observations
 - Estimated flows near the confluence
 North River: 735 cfs
 South River: 280 cfs
 South Fork Shenandoah: 1,015 cfs
 - Between Waynesboro and Hopeman Pkwy gauging stations, base flow is about 16 cfs higher than expected at 52 cfs
 - Contributions to base flow in that reach from dischargers and possibly groundwater

Evaluation Needs

- Detailed evaluation at urban sites
 - Input from tributaries and springs
 - Input from Permitted Discharges
 - Waynesboro
 - » DuPont, Genicom, Crompton, Virginia Metal Crafters
 - » POTW, WWTP
 - Harriston
 - Grottoes
- For the watershed obtain:
 - Infiltration rates
 - Evapotranspiration rates
- Refine conceptual understanding
- Test hypothesis(es) with field data