Ecological Study Update: June 2012 SRST Meeting

Ralph Stahl, Jr.

DuPont Corporate Remediation Group

Outline

- Ecological Study Timeline
- Introduce the objective of the Ecological Study Final report
- Describe the contents and major findings of the Ecological Study
- Present the conclusions of the Ecological Study

Ecological Study Timeline

- June 2005:
 - Consent Decree between DuPont and NRDC
 - Presents framework for Ecological Study
- March 2006:
 - Field work begins
- December 2011:
 - Field work completed
- May 2012:
 - Draft Ecological Study report sent to NRDC
- July 2012:
 - Consultation with NRDC
- August 2012:
 - Final report submitted to NRDC
- August 2013:
 - Remediation proposal submitted

Objective of the Ecological Study Final Report

- Answer four questions posed in the Consent Decree:
 - 1. Why has mercury remained higher than previously predicted in fish tissue in certain areas?
 - 2. How is bioavailable mercury getting to the river ecosystem?
 - 3. How is mercury getting into the tissue of fish and aquatic animals?
 - 4. Are there specific mercury pathways that significantly contribute to mercury levels in fish tissue?

Ecological Study Report Contents

- Environmental Setting/Phase 1 Findings
- Chemistry
- Biology
- Data Integration
- Findings
- Uncertainties
- Conclusions

Chemistry

- Mercury in surface water, sediment, and pore water increase between RRM 0 and RRM 10.
- The majority of mercury is loaded in the upstream reach (RRM 0 to RRM 10).
- Floodplain soil THg declines with distance downstream.
- River banks have high THg; some banks are eroding.
- THg in soil and sediment is bioavailable.
- Mercury methylation is widespread.

Biology

- MeHg concentrations in biota generally increase with distance downstream.
- Uptake rates of biota vary by trophic position and feeding behavior (i.e., aqueous vs. dietary exposure).
- Little or no evidence that mercury exposure affects benthic invertebrate or fish communities.

Data Integration

- Statistical Models
- Invertebrate and Fish Responses to Mercury
 - Sediment Quality Triad
 - Field (in situ) MicrocosmStudy
 - Integrated Assessment of Invertebrate and Fish Response to Mercury
- Conceptual System Model
- Relative Risk Model

Conceptual System Model Schematic

Findings

- 1. Why has mercury remained higher than previously predicted in fish tissue in certain areas?
- 2. How is bioavailable mercury getting to the river ecosystem?
- 3. How is mercury getting into the tissue of fish and aquatic animals?
- 4. Are there specific mercury pathways that significantly contribute to mercury levels in fish tissue?

- 1. Why has mercury remained higher than previously predicted in fish tissue in certain areas?
 - Inputs of inorganic mercury have not been mitigated by natural attenuation:
 - Geomorphic constraints
 - Low sedimentation rates
 - Original assessments may not have understood that small amounts of inorganic mercury in a system can support high concentrations of methylmercury in fish.

2. How is bioavailable mercury getting to the river ecosystem?

- Erosion of bank soils
- Transport of mercury from particle-associated mercury stored in sediment

3. How is mercury getting into the tissue of fish and aquatic animals?

- Input of inorganic mercury from soil
- Methylation of inorganic mercury:
 - Widespread
 - Diverse microbial community
- Biomagnification

4. Are there specific mercury pathways that significantly contribute to mercury levels in fish tissue?

- Dietary uptake is important, particularly for high trophic level fish
- At the base of the food web, aqueous exposure and consumption of particles is important for methylmercury uptake

Uncertainties

- Climate change
- Landscape alteration
- Regulatory changes
- Advances in science and technology

Conclusions

- There may be remedial options that are safe, effective and reasonably necessary
- An adaptive management approach will be used to address contamination
 - Structured and iterative process
 - Combines moderate scale pilot studies with monitoring
 - Future actions based on results of pilot studies

