Geomorphology Update Fall 2011 Expert Panel Meeting

Jim Pizzuto Dept. of Geological Sciences University of Delaware With Dr. Michael O'Neal and many students

Outline

• Predictions of

- mercury concentration on banks
- mercury loading from eroding banks
- Estimating residence time of hyporheic zone particles
 - Radiometric dating
 - Scour chains
- Overview of geomorphic processes along the South River

Quantify Hg Accumulation on Streambanks, 1930-2007, RRM 0-10

- Represent mercury accumulation as a sedimentation process
 - Mercury attached to suspended particles accumulates when areas are inundated by floodwaters

The Most Important Variables

- Frequency of inundation by floodwaters at a location
 - Elevation of a site relative to the river channel
 - Quantify inundation frequency with a detailed inundation frequency model
 - A independent computation using detailed stage-Q model
- Riparian vegetation (forest vs non-forest)
 - Vegetation traps sediment and mercury
 - Quantify with a simple model of vegetation-induced sediment trapping
- Sediment accumulation...can influence...subsequent sediment accumulation
 - Rates are mostly too low to worry about
 - But important at some sites where thick deposits have accumulated since 1930 (HRADS, or Hg release age deposits)
 - Quantify with a simple model of net sedimentation at HRAD sites only

Variables Neglected

- Distance downstream
- Post depositional physical erosion/remobilization
- Other sources of Hg (e.g. atmospheric deposition, etc)
 - We know it's negligible
- Geochemical transformations
 - Volatilitization
 - Leaching
 - Methylation
 - Etc.
- Local processes that cause unusually fine or organicrich sediments (with abundant Hg) to accumulate

The Mathematical Model

- A simple closed form analytical equation that predicts Hg inventory at any South River nearbank location
 - RRM 0-10
- Hg inventory:
 - The total mass of mercury per unit floodplain surface area
 - Units: kg Hg/m²

Model Calibration

- Use 27 sites where detailed data are available.
- Calibration determines 4 parameters that represent:
 - Hg accumulation rate during flooding
 - Increased accumulation caused by "forest" relative to "non-forest"
 - Maximum inundation depth for mercury accumulation
 - Floods deeper than a threshold value do not accumulate sediment or mercury
 - # of years required to accumulate HRAD deposits
- Approach:
 - Minimize rms error between observed and computed Hg inventories

Calibrated Model Results 2/3 of variance "explained" by calibrated model rms error = 0.0573 kg/m²

Parameter Values and 95% Confidence Intervals

Parameter	Value	95% Confidence Interval
Hg deposition rate (kg/m²/yr)	0.0055	0.0044-0.0066
Forest/non-forest Hg deposition ratio	3.05	2.43-4.72
Maximum inundation depth for Hg accumulation (m)	0.98	0.45-1.53
Time for HRAD deposition (years)	39	22-56

Predictions of Hg Loading From Bank Erosion (RRM 0-10)

 Combine Hg inventory predictions with bank erosion rate estimates

Approach

Divide banks into segments

 Each segment has characteristic geomorphic features and processes

- Computations not made for:
 - Banks modified by engineering structures
 - Banks with exposed bedrock
 - Banks dominated by sand deposition or erosion
 - No point bars, for example

Data Required To Estimate Loading

• Detailed cross-section and local river slope

- Field surveys
- 2010 USGS LIDAR
- Contours from 2005 LiDAR data
- Riparian vegetation 1937-2005
 - From historical aerial photos
- JEP hydraulic/hydologic model of flooding frequency
- Mercury concentration in banks
 - Field measurements on or NEAR banks
 - Data available for 60% of bank segments
 - No field data, use calibrated model
 - Model used for 40% of bank segments
- Bank erosion rate from (in order of preference)
 - Tripod lidar measurements
 - Historical aerial photographs
 - Channel curvature-based hydrodynamic erosion modeling
 - Visual mapping (with assumed 1 m retreat over 1937-2005)

ArcGIS Data Layers..

Bank Loading Binned By RRM

Relative River Mile

Cum. Loading By RRM, Category

19 "High" Banks Account for 2/3 of Total Loading

Cum. Loading By RRM, Category

"Medium" Loading Banks Account for 1/3 of Total Loading

Loading From "Medium" Banks Evenly Distributed vs RRM

"Low" Loading Banks Contribute Little Total Loading

Eroding Banks Sorted From High to Low Loading, by Cum. #, Length

99% of Loading Accomplished By ~76 Banks with Cumulative Length of ~8.3 miles. 75% of Loading Accomplished by ~24 Banks with Cumulative Length of ~4.2 miles.

Eroding Bank Length Statistics

Average (mi)	0.08
Standard Dev. (mi)	0.12
95th Percentile (mi)	0.2
75th Percentile (mi)	0.09
50th Percentile (mi)	0.06
25th Percentile (mi)	0.03
5th Percentile (mi)	0.01

= ~300 ft

Residence Time of Hyporheic Zone Particles From Radiometric Dating - New Interpretations/Results

- Use radiometric dating methods utilizing:
 - Pb-210 (half-life 22.3 years)
 - Be7 (half-life 53 days)
 - Cs-137 (activity from nuclear testing peaked in 1963)
- Tried to date
 - Sand fraction only (not enough activity)
 - Silt and clay fraction (successful)

Study Location RRM 4.35

Typical pool-riffle section
Bed material mixed sand,
cobble that is representative of
many areas of the South River

Results

Cs137 (Peak in 1963)

Interpretation

- A mixture of "young" and "old" sediment
- From:
 - Contamination during coring?
 - Deposition at depth of small amounts of new sediment during recent events?
 - No way to know which is correct

Fit 2-Age Model To Data

Depth	Fraction of Young Sediment	"Old" Age (years)	"Young" Age (years)
0-5 cm	0.4	6	0
5-10 cm	0.1	55	0
10-15 cm	0.25	15	0
15-20 cm	0.22	42	0
20-25 cm	0.35	32	0

Cumulative "Older" Age Distribution

Mean age = ~ 32 years, Residence time (assuming no net erosion or deposition) = ~36 years

Measurements of Bed Scour using Scour Chains and Repeat Surveys: Direct Observations of Hyporheic Zone Particle Reworking

Scour Chain in Place

Summary of "Scour" Events Monitored

Event Date	Flow (m ³ /s)	Recurrence Interval (years)		
September 28, 2010	56.6	0.95		
December 1, 2010	84.9	2.25		
March 10, 2011	45.3	0.61		
April 16, 2011	229.4	12.76		

All of these discharges were capable of transporting the bed material!

Summary of All Scour/Fill Data

The overwhelming major of measurements indicate NO SCOUR OR FILL

Areal Frequency of Scour/Fill Events – An Estimate

Several decades are likely needed to scour the entire streambed!

South River Geomorphology: Overview of Processes and History Relevant to Mercury Fate and Transport What have we learned during the last 6 years?

Description/Classification of the South River

- Gravel-bed, bedrock river with:
 - Bedrock is exposed every few 100 m along the channel
 - Localized riffle/pool reaches
 - But not a typical alluvial pool/riffle stream
 - ~ Mile long pools related to bedrock (?)/tributary input fan "obstructions"(?)
 - Non-meandering sinuous planform
 - Abundant islands formed by avulsion
 - A new island forms ~ every 5 years between Waynesboro and Port Republic

Mixed-load

• Significant bedload and suspended load transport

Ongoing Influence of Past Events on Mid-Atlantic Streams

- Pleistocene periglacial processes deliver a load of untransportable boulders to stream valleys???
 - A new, but compelling hypothesis
- Catastrophic debris flows destroy alluvial valleys in Virginia every few hundred years
- European settlement
 - Increased sediment yield from deforestation and agriculture
 - Sediment trapping by mill dams
- 20th century
 - Flood control
 - Urbanization
 - Increased runoff
 - Reforestation

 Hg release by plant at Waynesboro, into South River, 1929-1950 History of Mercury Concentration on Particles in the South River

Skalak and Pizzuto, in review

Why Does Hg Persist in the South River Decades After the Initial Release?

- Particles with adsorbed mercury are *stored* rather than transported downstream
- Stored sediment is released by *episodic* particle erosion

– and geochemical processes (?)

Centennial Floodplain Accumulation Rates Determined From Hg Inventories

Pizzuto et al. in review

Conceputal Models of Near-Channel Mercury and Sediment Accumulation, 1930-Present, South River, Virginia

Mercury and Sediment Accumulation Settings – Geomorphic Classification

- Floodplain Levee (4 types)
 - Simple
 - Complex
 - Near eroding banks or non eroding banks
- Laterally Accreting Floodplain
- Sandy Point Bar Floodplain
- Mill Dam Bench
- Tributary Confluence Sedimentation
- Islands
 - Islands developed from bars
 - Islands created by floodplain cutoffs
- Deposits related to cattle

ITALICS - No figures developed as yet for these!

Flood plain Levee Sedimentation - Groding Bank Hg & with & slope, bank height 0,2M ---- 1930 - PRESENT 1 m D GRAIN Size == silt + clay (< 0.0625 mm Sand (.0625-2 mm) @ Gravel (> 2 mm) Hy Concentration 7 20 ppm
7 20 ppm
7 - 20 ppm
1 ∠ 7 ppm Examples: RRM 2.9-3.0 (left bank) (high Hg) RRM 3.22 (Right bank) (low Hg) RRM 3,50 " RRA 8:25 (left bank) " RRM 9.78 11 11 RRM 2.18 (Right) (high Hz)

Floodplain Levee Sedimentation -- Now - Ending Bank Ity & with Islope, bank height 0.2 m ----1 - 1 7 11m ---- 1930 present 10 M GRAIN Size I=J silt + clay Till Sand 100 GRavel Ity Concentration 20 ppm 7-20 ppm 1 27 ppm Examples : Rem 2.55 (both banks) (high Hz) RRM 2.22 (Right bank) " RRM 2,76 (left bank) " RRM 3,8 (both banks) (Hg-L-low, R-high) RRM 4,2 " (Low Hg) etc,

HRADS!! (Hg Release Age Deposits)

Laterally Accreting Floodplain --- 1930 present 1m buried Form deposit (?) 10 m GRAIN Size E sitt + clay ES Sand 0 Gravel to Concentration 1 > 20 ppm 1 7-20 ppm ZZ ppm Examples - RRM 2.9-3.0 (Right) - RRM 3.6 (left) - RRM 3,9 (left)

Sandy Point Bar Floodphin 1930 present 0:00 11m 10 m GRAIN Size I silt & clay Sand 101 gravel Hg Concentration > 20 ppm 17-20 ppm A <7 ppm RRM 8.25 (Right bank) RRM 4.11 (Right bank) RRM 5.14 (left bank) Examples : RRM 3.10 (Right bank)

Mill Dam Beach ---- 1930 - Present 11m LO M GRAIN Size I Sitt + chy [:-] Sand 101 gravel Hy Concentration 20 ppm 17-20 ppm C7 PPM Examples RRM 7.4 (right bank) RRM 9.5 (Right bank) RRM 4.0 (left bank)

Colonial Mill Dams

- 14 in place from Waynesboro-Port Republic in 1930.
- All breached at present
- These likely enhanced mercury and sediment storage over a short reach upstream of each dam.
- After breaching, some of the stored sediment and mercury has been removed.
- Little data or analysis documents these processes

Conceptual Model of Mill Dam Accumulation and Post-Breaching Incision (based on little data)

Mercury is Released Into the South River From Bank Erosion

Estimated Hg loading rates from every eroding bank from Waynesboro – Port Republc A Fine-Grained Sediment Budget Quantifies Particle Transfers Rates and Processes of the South River

The Numbers, for the recod

Table 1. Fine-grained	d (silt, clay, and sai	nd) sediment st	ored in the flo	odplain, hypor	heic zone, and fine-g	rained channel margin deposits of t	he South Rive	r,	
and annual fluxes be	tween these envir	onments and th	e water colum	ın.					
Sediment Storage			Transit Time Annual Sedimen		diment Fluxes				
Storage Component	Mass in Storage (x100 Mg)	Storage Mass Uncertainty (x100 Mg)	Storage as Fraction of Annual Suspended Load	Transit Time (vears)	Transit Time Uncertainty (years)	Flux Component	Annual Flux (x100 Mg/vr)	Flux Uncertainty (x100 Mg)	Fraction of Annual Suspend ed Load
Floodplain	36000	13000	493	8165	5436	Suspended sediment	73	19	1.00
FGCM deposits	4.5	2.6	0.06	1.43		Overbank deposition rate	6.4	2.2	0.09
Hyporheic zone	0.07	0.053	0.0010	5.0000		Fluvial bank erosion rate	2.4	1.2	0.03
Total Storage	36005	13003	493	4800	2600	Bank erosion - cattle & beaver	0.013	NA	0.0002
						Mean floodplain exchange rate	4.4	2.5	0.06
						FGCM exchange rate	3.2	1.8	0.04
						Hyporheic zone exchange rate	0.014	0.01	0.0002
						Total exchange rate	7.6	3.1	0.10

Implications

- Particles transported into a reach in suspension by the South River are completely replaced by new particles from storage after an average distance of 28 +/- 13 km
- Once in storage, the average particle remains in storage for <u>4800</u> +/- <u>2800</u> years.
- This gives a spatial and temporal average downstream transport velocity for suspended particles of 6 +/- 4 m/yr.

Any Questions??