Greenhouse and Garden Experiments to Study Soil-Hg Interactions with Plants

Bill Berti

DuPont Central Research & Development Glasgow, Delaware

Waynesboro Science Team Meeting

December 11, 2002

Overview

- Study objectives
- Soil/Site selection criteria
- Soil characterization
- Vegetable selection
- Greenhouse study plan
- Garden study plan
- Vegetable analysis
- Proposed Project Timeline

Study Objectives

- Determine if soil-Hg is taken-up via the roots of vegetable crops in sufficient levels to be a health risk
- Greenhouse Study
 - Well-controlled conditions; water, light, fertilization, temperatures, homogenized soil, control pests
- Garden Study
 - Include larger number of vegetable crops
 - Validate results of greenhouse study

Soil/Site Selection Criteria

- "Representative" Site/Soil
 - Representative range of Hg content
 - Representative soil characteristics
 - Currently supports plant growth
- Four soil-Hg levels
 - "Background", "Low", "Medium", "High"
- Collect from surface to 15-cm depth
- Paired to potential garden site

Soil Characterization

- Mercury content
 - Total, extractable, and available
 - Physical/chemical speciation
- pH
- Texture/Clay content
- Soil Organic Matter Content
- CEC, plant available nutrients
- Water-holding capacity

Vegetable Crops – Top 15 in Economic Value (*Root Crops*)

- Beans (pole, bush)
- Beets
- Broccoli
- Carrots
- Cucumbers
- Edible pod peas
- Green bunching onions

- Head lettuce
- Onion storage bulbs, shallot
- Peppers
- Summer squash
- Swiss chard
- Tomatoes
- Turnip (greens & roots)

Greenhouse Study Plan

- Completely randomized design
 - Min. 4 reps
- Five planting media
 - Greenhouse potting mix reference soil
 - "Background" Hg soil control soil
 - "Low" Hg soil
 - "Medium" Hg soil
 - "High" Hg soil
- Remove rocks/debris greater than 7 mm
 - Adjust pH between 6.2 to 6.8
 - Add compost and any required nutrients
 - Mix, pot, plant/transplant; water as needed

Greenhouse Study Plan (cont'd)

- Five vegetables, including 2 root crops
- Harvest, prepare, and analyze edible part(s) at maturity
 - Composite samples from each rep
 - Pots/samples:
 - 4 Reps x 5 Soils x 5 Vegetables = 100
- Re-analyze soils at harvest

Garden Study Plan

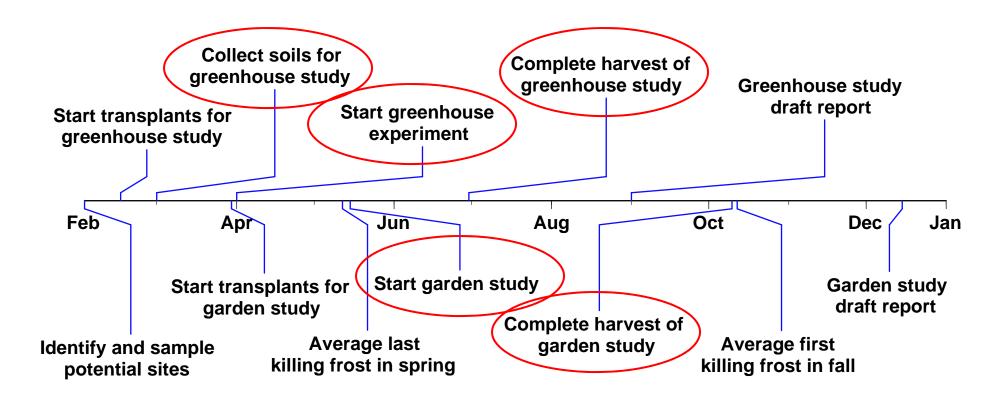
- Site(s) characteristics
 - Selected from where soils were collected
 - Level area or south-facing slopes
 - No low spots and windy areas
 - Loose, well-drained
 - Good, accessible water supply
 - Convenient place to work; secure
 - Away from trees, shrubs, and buildings

Garden Study Plan (cont'd)

- At least 6 hours of sun (8 to 10 hours ideal)
- Remove rocks/debris
 - Adjust pH between 6.2 to 6.8
 - Add compost and any required nutrients
 - Rototill, plant or transplant; water as needed
- Plant following VA Cooperative Extension recommendations
 - Planting dates, horticultural practices, vegetable varieties, etc.
- Include vegetables from greenhouse study
- Re-analyze soils at harvest

Vegetable Analysis

- Fresh and dry weights
- Preparation for analysis
 - Above-ground
 - Unwashed and washed
 - Root crops
 - Washed; washed and unpeeled; washed and peeled beats, carrots, onions
- Digest and measure total mercury
- Check for soil contamination
 - Determine elements in high amounts in soil but not taken up by plants
 - Titanium and/or Aluminum



Sources of Guidance

- Virginia Cooperative Extension
- Peer-reviewed literature
- US EPA Test Guidelines
 - Seed germination/seedling emergence (850.4100, 850.4200, 850.4225)
 - Early seeding growth (850.4230)
 - Vegetative vigor (850.4150 & 850.4250)
 - Terrestrial plants field test (850.4300)
 - Plant uptake and translocation test (850.4800)

Proposed Project Timeline

