Total Hg in Fish Tissue vs. Hydrology Data

August 28, 2006 John W. Green

Overview

- There are significant relationships between
 - days of high discharge rates (probably storm events) and high fish tissue Hg content
 - between periods of low discharge rates and low fish tissue Hg content
- Should not be over-interpreted
 - Some plots suggest the regressions are driven by three large storm events and a few periods of unusually low flow rates

Years Fish Sampled

Years	Species	Sampled
-------	---------	---------

	LMB	SMB	Sucker	SunFish
Year				
1977	х	х	х	X
1978	х	х	х	X
1979	х	х	х	X
1980	x	х	х	Х
1981	x	х	х	X
1983	X	x	х	X
1984	x	х	х	X
1985	X	x	х	X
1986	x	x	х	X
1987	x	х	х	X
1992	X	x	х	X
1994	X	x	х	X
1996	x	x	х	X
1999	x	x	х	X
2001		x		
2002	x	x	х	X
2005	X	X	Х	x

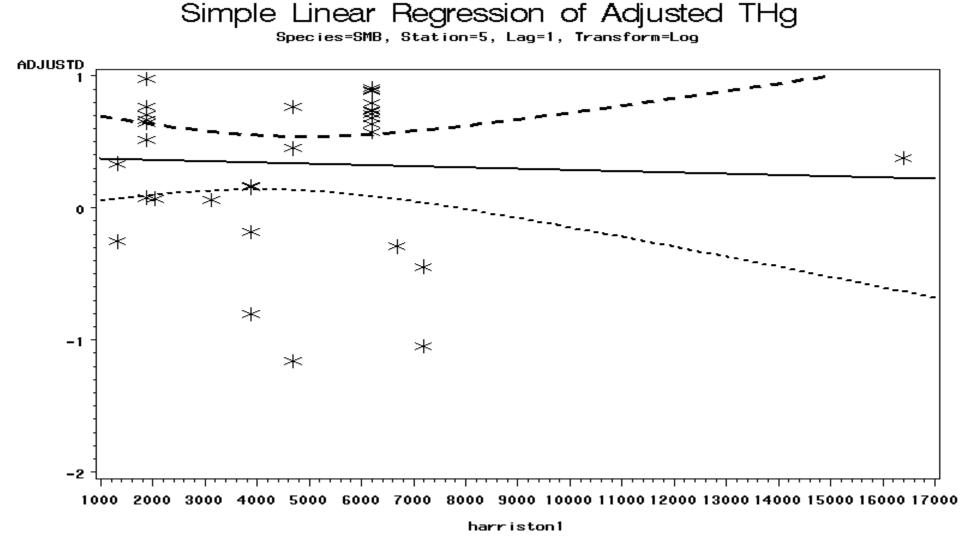
Fish were not sampled every year.

There are 1, 2, 3 and 5 years between samples.

Relationship between discharge rates (or storm events) and total Hg in fish tissue might be confounded by delay in sampling.

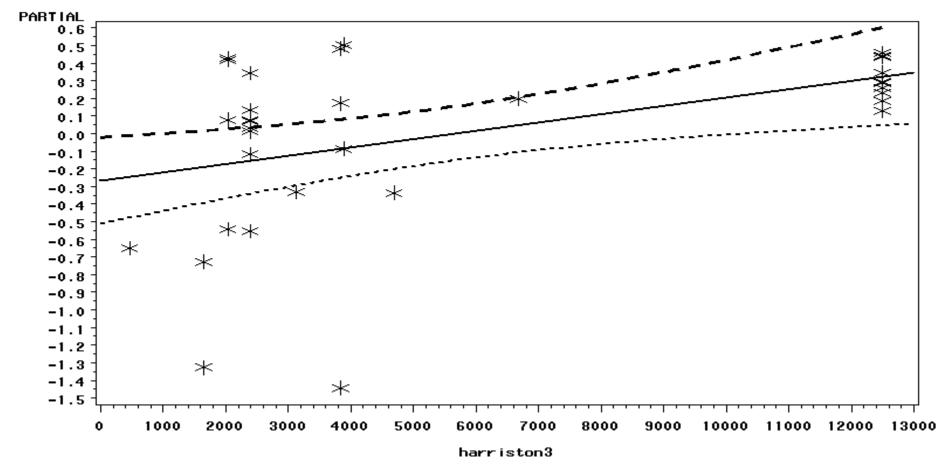
Analysis should allow for up to 3year time lag between storm event and effect observed in fish.

Regression of Fish Tissue Hg on Discharge Data

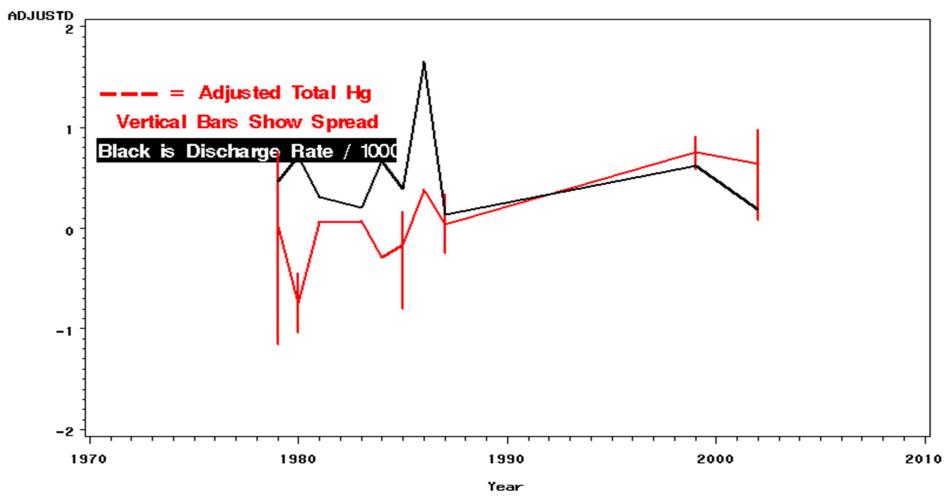

- Total Hg in fish tissue is adjusted for fish size through ANCOVA of log(THg) on log(Length), with factors Year, Station, and slope adjustments for each factor
 - Separately for each species
- Log(Adjusted total Hg) then regressed on maximum daily discharge rate at 0, 1, 2, and 3-year time lags
 - Separately for each species, and station

Regression

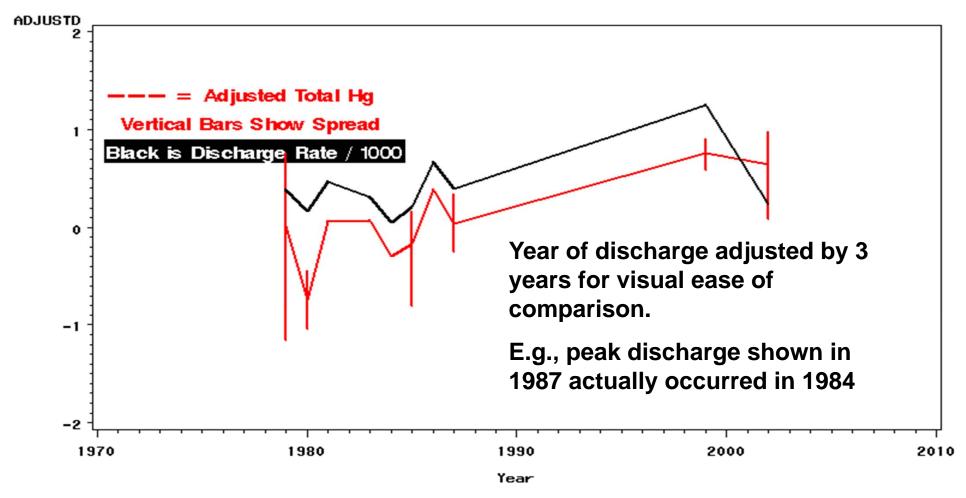
- Visual and formal analysis showing relationships between total fish tissue Hg and maximum daily discharge 0, 1, 2, and 3 years previous to fish sample
- Similar results obtained regressing on maximum monthly or annual discharge


Regression of Log(Adjusted Hg) vs Year SMB at Station 5, Dooms, VA near Rt. 611 bridge (above dam)

model	rsquare	ratio/rsqr	Source		DF	FValue	ProbF
Year	•	•	Model		9	5.03	0.0007
Year	•	•	Error		24	_	_
Year	•	•	Corrected	Total	33	_	_
Year	0.65372	•	R-Square		•	•	•
Hydro	•	•	Model		4	6.51	0.0007
Hydro	•	•	Error		29	_	_
Hydro	•	•	Corrected	Total	33	_	_
Hydro	0.473198	72	R-Square		•	•	•
Hydro	•	•	harriston	0	1	2.46	0.1278
Hydro	•	•	harriston	1	1	4.89	0.0350
Hydro	•	•	harriston	2	1	1.72	0.2004
Hydro	•	•	harriston	3	1	11.01	0.0024
	Parameter	Estim	ate	StdErr		tValue	Probt
	Intercept	0.4918267	901 0	.18569322		2.65	0.0129
	harriston0	0000281	926 0	.00001798		-1.57	0.1278
	harriston1	0000654	337 0	.00002958		-2.21	0.0350
	harriston2	0000296	161 0	.00002260		-1.31	0.2004
	harriston3	0.0000647	686 0	.00001952		3.32	0.0024


Slight negative slope evident, due to high discharge rate in 1985

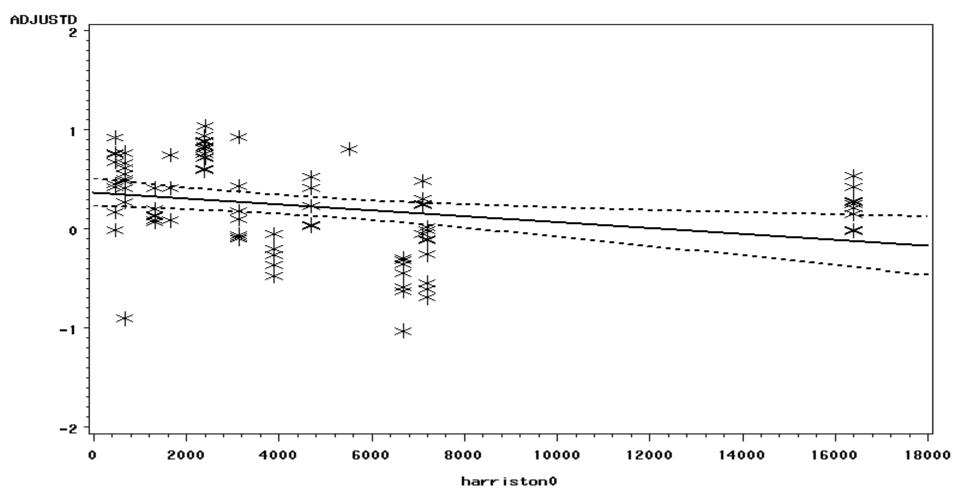
SMB at Station 5, Dooms, VA near Rt. 611 bridge (above dam) Discharge Measured at Harriston, 3 Years Previous Discharge rates Divided by 10000 for Ploting


Partial regression plot showing relationship of THg vs Lag3 discharge rate after correcting for lags 0, 1, and 2. This corresponds to ANOVA table on previous slide. Regression driven by high rate (occurring in 1996)

SMB at Station 5, Dooms, VA near Rt. 611 bridge (above dam) Discharge Measured at Harriston, 1 Years Previous Discharge rates Divided by 10000 for Ploting

The inverse relationship is evident prior to 1985. Effect of major 1985 storm is associated with increase in 1986 Hg levels.

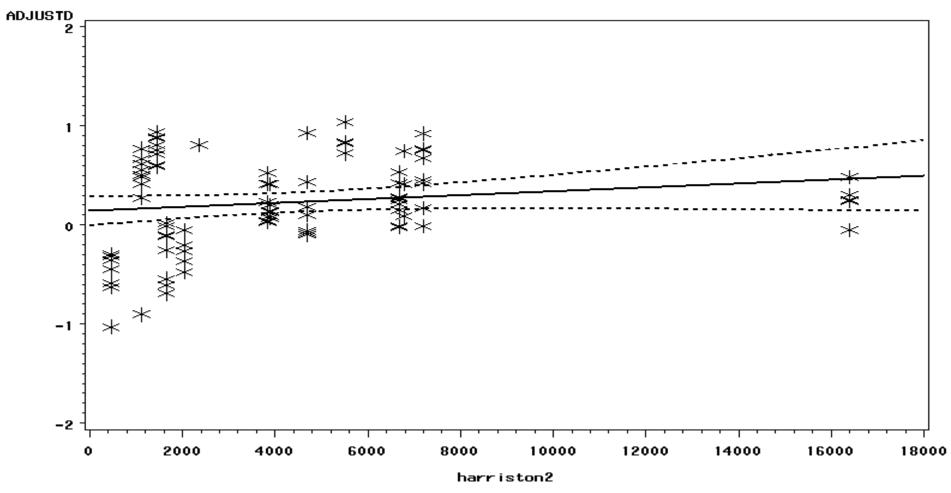
SMB at Station 5, Dooms, VA near Rt. 611 bridge (above dam) Discharge Measured at Harriston, 3 Years Previous Discharge rates Divided by 10000 for Ploting


Good correspondence between 3-year lag discharge rate and Hg levels. Effect of 1985 major storm not seen because no fish were sampled in 1988.

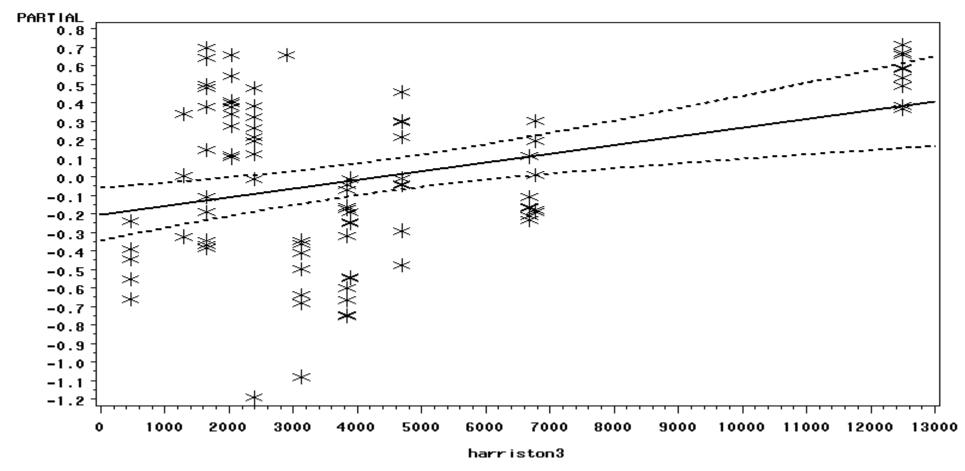
Regression of Log(Adjusted Hg) vs Year SMB at Station 7, Grottoes, VA near Grand Caverns bridge

model	ratio/rsqr	rsqr	Source		DF	FValue	ProbF
Year	•	•	Model		13	13.93	<.0001
Year	•	•	Error		76	_	_
Year	•	•	Corrected	Total	89	_	_
Year	0.704344	•	R-Square		•	•	•
Hydro	•	•	Model		4	7.61	<.0001
Hydro	•	•	Error		85	_	_
Hydro	•	•	Corrected	Total	89	_	_
Hydro	0.263811	37	R-Square		•	•	•
Hydro	•	•	harriston()	1	7.46	0.0077
Hydro	•	•	harriston1	L	1	0.94	0.3354
Hydro	•	•	harriston2	2	1	7.99	0.0059
Hydro	•	•	harriston3	3	1	14.47	0.0003
	Parameter	E	stimate	Std	Err	tValue	Probt
	Intercept	0.044	5480645	0.12318	603	0.36	0.7185
	harriston0	000	0281379	0.00001	030	-2.73	0.0077
	harriston1	000	0123481	0.00001	275	-0.97	0.3354
	harriston2	0.000	0328303	0.00001	162	2.83	0.0059
	harriston3	0.000	0532205	0.00001	399	3.80	0.0003

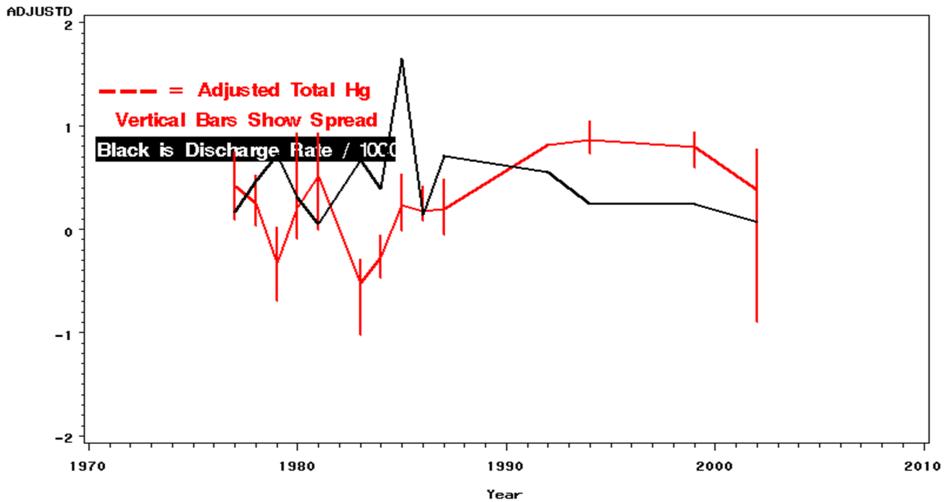
Simple Linear Regression of Adjusted THg


Species=SMB, Station=7, Lag=0, Transform=Log

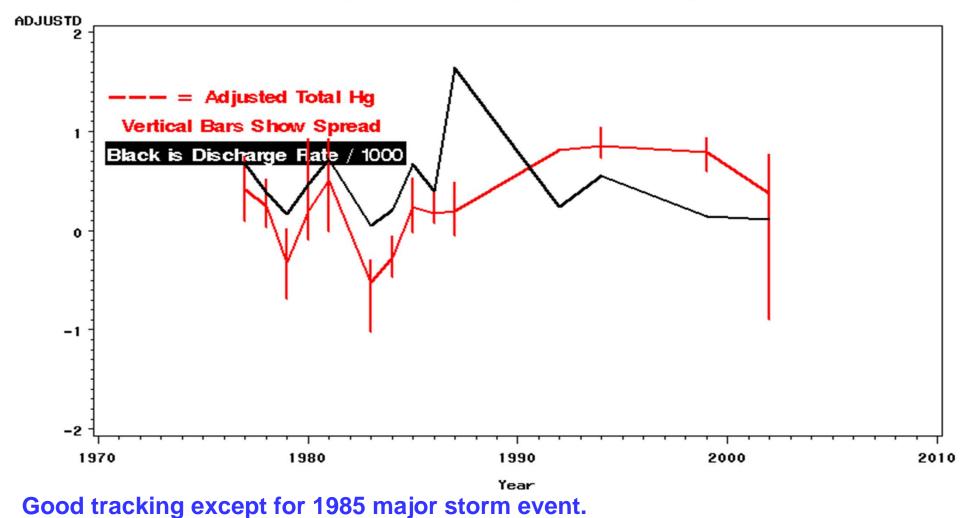
Downward trend appears real, would be steeper without high discharge rate in 1985


Simple Linear Regression of Adjusted THg

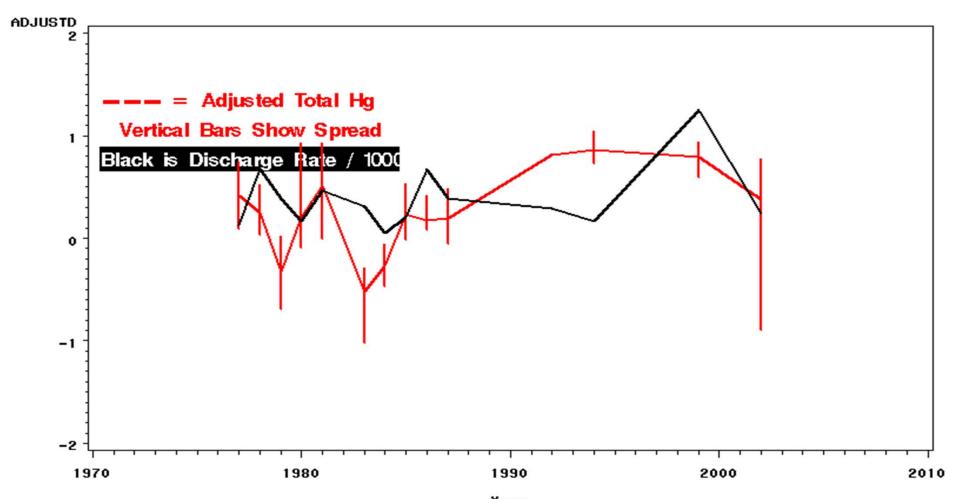
Species=SMB, Station=7, Lag=2, Transform=Log


Positive slope due in part to high discharge rate in 1985, low rates in 1981, 2002

SMB at Station 7, Grottoes, VA near Grand Caverns bridge Discharge Measured at Harriston, 3 Years Previous Discharge rates Divided by 10000 for Ploting


Partial regression plot showing relationship of THg vs Lag3 discharge rate after correcting for lags 0, 1, and 2. This corresponds to last line of ANOVA table on previous slide. High discharge rate is from 1996.

SMB at Station 7, Grottoes, VA near Grand Caverns bridge Discharge Measured at Harriston, 0 Years Previous Discharge rates Divided by 10000 for Ploting

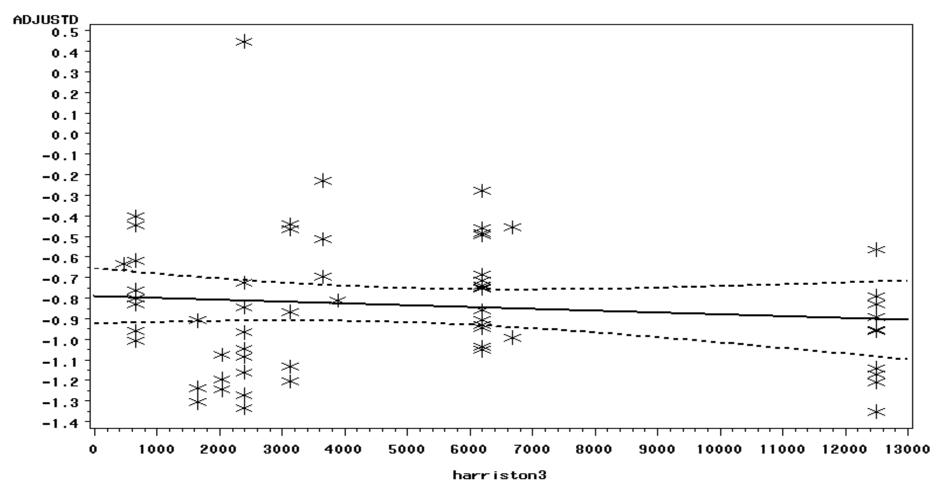


Peak discharges match with decreases in Hg. Major storm in 1985 was after fish were sampled.

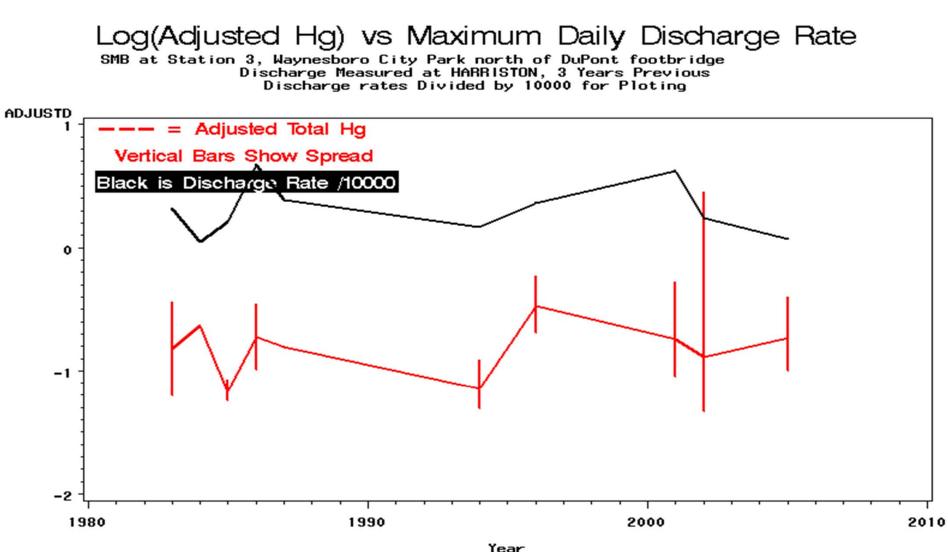
SMB at Station 7, Grottoes, VA near Grand Caverns bridge Discharge Measured at Harriston, 2 Years Previous Discharge rates Divided by 10000 for Ploting

SMB at Station 7, Grottoes, VA near Grand Caverns bridge Discharge Measured at Harriston, 3 Years Previous Discharge rates Divided by 10000 for Ploting

Fish were not sampled in 1988, so 3-year lag misses major storm in 1985. Relationship between 3-year lag discharge rate and Hg less compelling than that between 2-year lag, but this corrects for 1985 major storm effect not seen in previous plot.


Regression of Log(Adjusted Hg) vs Year SMB at Station 3, Waynesboro City Park north of DuPont footbridge

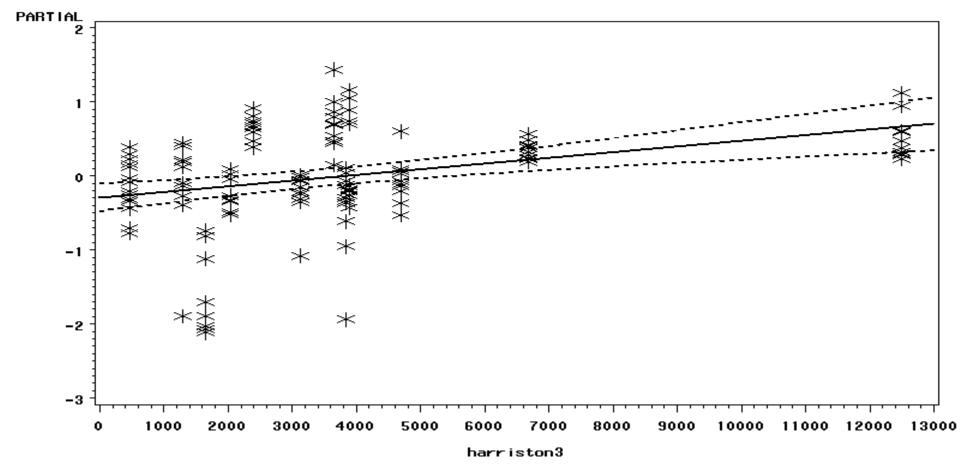
model	ratio/rsqr	rsqr	Source	DF	FValue	ProbF
Year	•	•	Model	10	1.65	0.1188
Year	•	•	Error	50	_	_
Year	•	•	Corrected Total	60	_	_
Year	0.248505	•	R-Square	•	•	•
Hydro	•	•	Model	4	0.22	0.9265
Hydro	•	•	Error	47	_	_
Hydro	•	•	Corrected Total	51	_	_
Hydro	0.018301	7	R-Square	•	•	•
Hydro	•	•	harriston0	1	0.00	0.9713
Hydro	•	•	harriston1	1	0.02	0.8890
Hydro	•	•	harriston2	1	0.60	0.4408
Hydro	•	•	harriston3	1	0.20	0.6603
Param	neter	Estimate	StdErr	tValue	e Probt	
Inter	ccept76	62702239	0.12127298	-6.32	2 <.0001	
harri	lston0 0.00	00004623	0.00001276	0.04	e 0.9713	
harri	ston100	00023116	0.00001647	-0.14	L 0.8890	
harri	lston200	00164938	0.00002122	-0.78	0.4408	
harri	lston300	00065884	0.00001489	-0.44	L 0.6603	


Total Hg values at station 3 were uniformly low. Regression and plots do not indicate relationship where none exist.

Simple Linear Regression of Adjusted THg

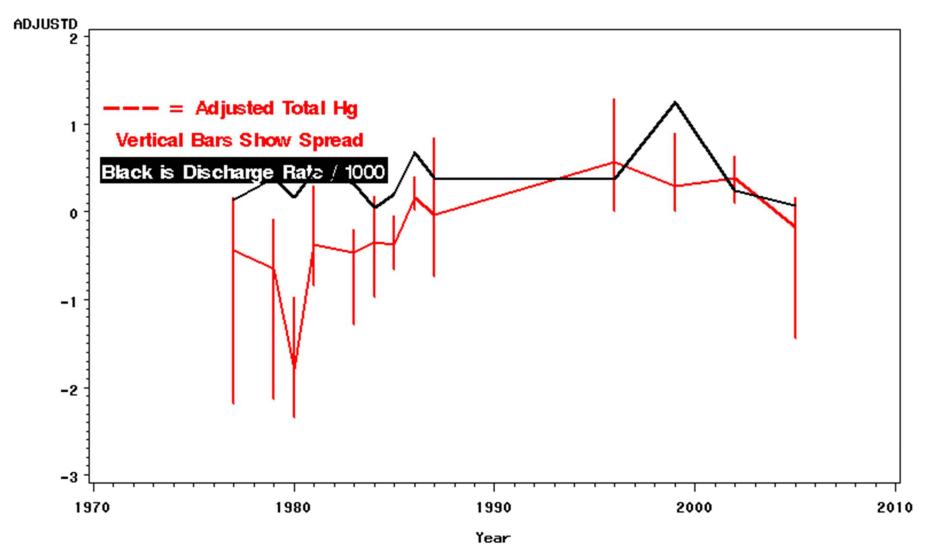
Species=SMB, Station=3, Lag=3, Transform=Log

Partial regression plot showing little relationship of THg vs Lag3 discharge rate after correcting for lags 0, 1, and 2. This corresponds to ANOVA table on previous slide.



Tracks poorly up to 1985, well 1986-1997, poorly 1997-2001 and 2002-2005. Weak correlations in line with preceding ANOVA table.

Regression of Log(Adjusted Hg) vs Year SUCK at Station 5, Dooms, VA near Rt. 611 bridge (above dam)


model	rsquare	ratio/rsqr	Source	DF	FValue	ProbF
Year	•	•	Model	12	17.11	<.0001
Year	•	•	Error	119	_	_
Year	•	•	Corrected Total	131	_	_
Year	0.633048	•	R-Square	•	•	•
Hydro	•	•	Model	4	4.88	0.0011
Hydro	•	•	Error	118	_	_
Hydro	•	•	Corrected Total	122	_	_
Hydro	0.142053	22	R-Square	•	•	•
Hydro	•	•	harriston0	1	1.91	0.1698
Hydro	•	•	harriston1	1	0.27	0.6023
Hydro	•	•	harriston2	1	0.13	0.7141
Hydro	•	•	harriston3	1	18.50	<.0001
Para	meter	Estimate	StdErr	tValue	Prob	ot
Inte	rcept	5869554382	0.16737606	-3.51	0.000)6
harr	iston0	0.0000183933	0.00001332	1.38	0.169	8
harr	iston1	0000082671	0.00001582	-0.52	0.602	23
harr	iston2	0000050969	0.00001388	-0.37	0.714	1
harr	iston3	0.0000859273	0.00001998	4.30	<.000)1

SUCK at Station 5, Dooms, VA near Rt. 611 bridge (above dam) Discharge Measured at Harriston, 3 Years Previous Discharge rates Divided by 10000 for Ploting

Partial regression plot showing relationship of THg vs Lag3 discharge rate after correcting for lags 0, 1, and 2. This corresponds to ANOVA table on previous slide.

SUCK at Station 5, Dooms, VA near Rt. 611 bridge (above dam) Discharge Measured at Harriston, 3 Years Previous Discharge rates Divided by 10000 for Ploting

Slopes of Significant Regression species=SUNFISH YEAR			_	s of Sig sp	-	SMB			
	0	1	2	3		0	1	2	3
station					statio	n			
3					3				
5				9.86	5		-6.54		6.48
6		2.41		5.31	6		-5.92		4.02
7			2.14	3.84	7	-2.81		3.28	5.32
8					8	3.42			
Slopes of Significant Regression					_				
stopes (or sig	nifica	nt Reg	ression	Slopes	s of Sig	ynifica	ant Reg	ression
				ression T					ression
			DBREAS					SUCKER	
		ies=RE	DBREAS				pecies: YEA	SUCKER	
	- spec 0	ies=RE YEA	DBREAS R	ST		sr 0	pecies: YEA	SUCKER	
	- spec 0	ies=RE YEA	DBREAS R	ST		sr 0	pecies: YEZ 1	SUCKER	
station	- spec 0	ies=RE YEA	DBREAS R	3 3		sr 0	pecies: YEZ 1	=SUCKER AR 2	
station	- spec	ies=RE YEA 1	DBREAS R 2	3 13.24	 static 3	sr 0	pecies: YEZ 1 -9.12	=SUCKER AR 2	3 8.59
station 3 5	- spec	ies=RE YEA 1 3.21	DBREAS R 2	3 13.24 10.23 5.26	 static 3 5	sr 0 on 2.37	pecies: YEZ 1 -9.12	=SUCKER AR 2 5.15 -2.84	3 8.59
<pre>station 3 5 6</pre>	- spec	ies=RE YEA 1 3.21	DBREAS R 2 0.96	3 13.24 10.23 5.26	 static 3 5 6	sr 0 on 2.37	pecies: YEZ 1 -9.12	=SUCKER AR 2 5.15 -2.84	3 8.59 8.53

There is some consistency in the slopes wrt discharge 3 years previous at stations 5, 6, 7 (Dooms, Crimora, Grottoes). Note: Slopes multiplied by 100000 for easy reference.

Summary of Significant Regressions

	-specie	es=SUN	FISH -			spec	cies=SM	B	
		YEAR					YEA	R	
	0	1	2	3		0	1	2	3
statio	on				station	n			
3	0	0	0	0	3	0	0	0	0
5	0	0	0	1	5	0	-1	0	1
6	0	1	0	1	6	0	-1	0	1
7	0	0	1	1	7	-1	0	1	1
8	0	0	0	0	8	1	0	0	0
	-specie	es=RED	BREAST			- speci	les=SUC	KER	
		YEAR					YEA	R	
	0	1	2	3		0	1	2	3
statio	on				station	n			
3	0	0	0	1	3	0	-1	1	0
5	1	0	0	1	5	0	0	0	1
6	0	1	1	1	6	1	0	-1	1
7	0	0	-1	1	7	1	1	0	1
8	0	1	0	0	8	0	-1	0	1
4	ificant			4:00					

1=significant positive correlation -1=significant negative correlation 0=non-significant correlation

Summary of Significant Regressions

-----species=LMB ------

		YEAR		
	0	1	2	3
statio	n			
3	1	0	0	0
5	0	0	0	0
6	0	0	0	0
7	1	-1	1	-1
8	-1	1	0	0

1=significant positive correlation -1=significant negative correlation 0=non-significant correlation

There were relatively few large mouth bass caught at these stations (next slide), which may account for the different patterns for this species.

Fish Tissue Sample Sizes

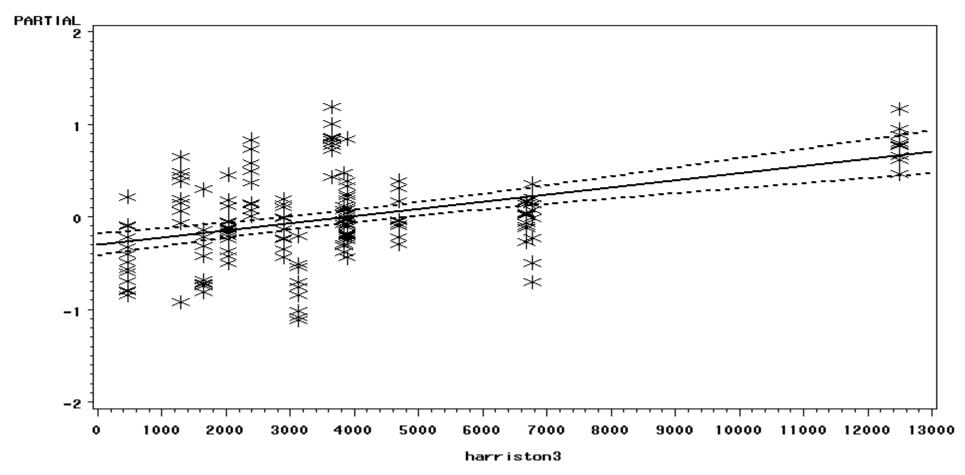
Full Sample Size									
	species								
	LMB	REDB	SMB	SUCK	SUN				
station									
3	3	76	61	160	150				
5	44	104	34	132	192				
6	28	386	48	168	521				
7	22	89	90	137	172				
8	9	103	88	127	167				

Summary

- A significant percent of variation in adjusted fish tissue Hg is "explained" by the maximum daily discharge rate in the 3 years prior to fish sampling
 - In most cases, there is an apparent 3-year lag between high discharge rates and high Hg
- Note: The month of fish sampling is often not known
 - Adds some vagueness to time lag
 - Some current year sampling may come after time of highest discharge rate

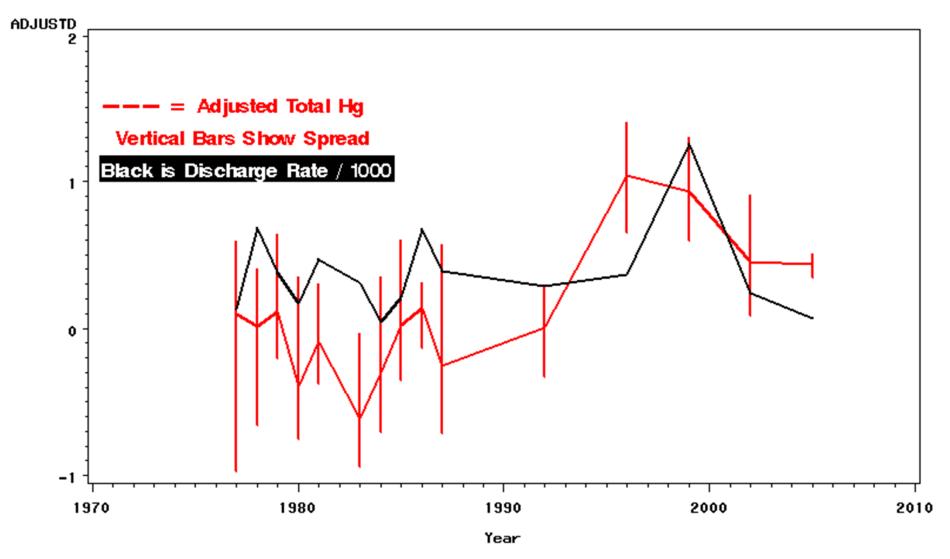
Possible Follow-up

- Use maximum of 2- or 3-day moving average instead of maximum daily rate
 – Sustained storm vs limited duration
- Date time from fish sample, not calendar year
- Regress only over period 1977-1987
 - Yearly fish sample available, allows exploration of apparent 3-year time delay
 - Period may be too short to be meaningful


Additional Results

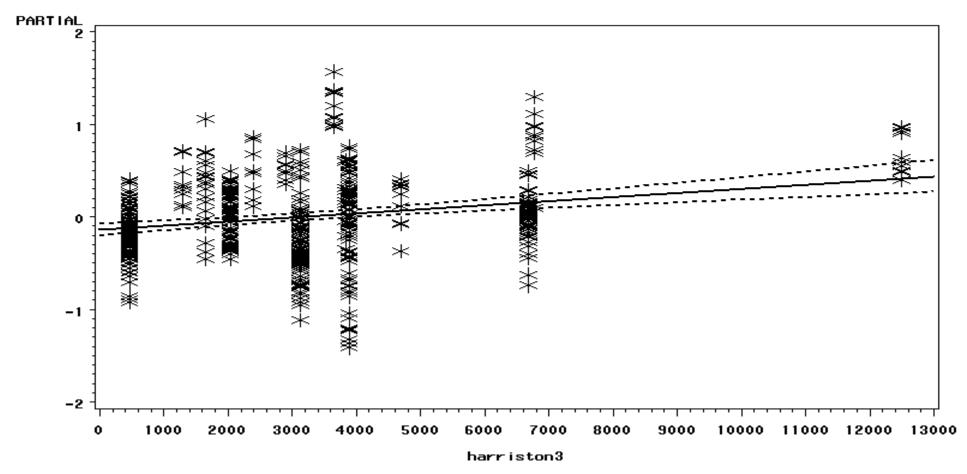
- Additional, similar slides are provided for the other species (Sunfish, LMB, Redbreast, more sucker)
- An appendix is given indicating how the assumptions underlying the modeling were done and what the results were

Regression of Log(Adjusted Hg) vs Year SUCK at Station 6, Crimora, VA near Rt. 612 bridge

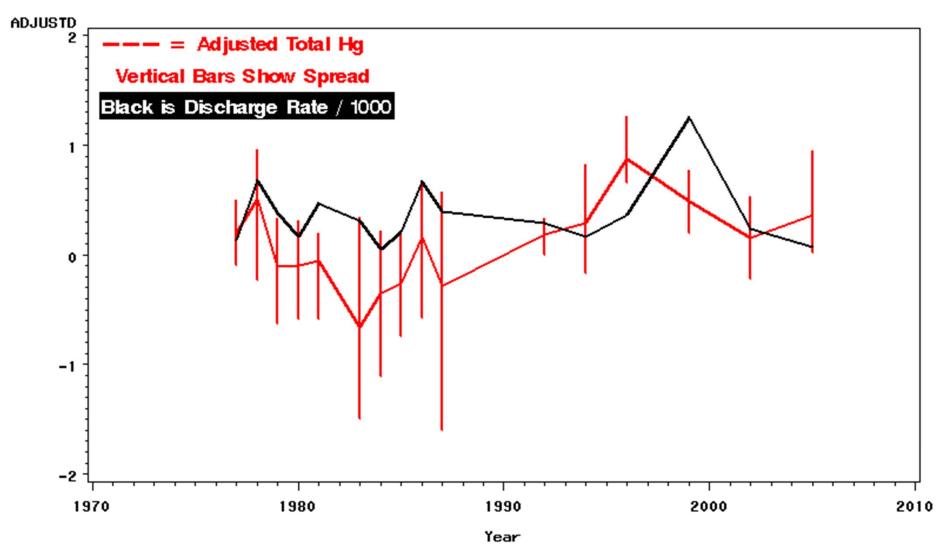

model	rsqr	ratio	o/rsqr	Source		DF	FValue	ProbF
Year		•	•	Model		14	29.15	<.0001
Year		•	•	Error		153	_	_
Year		•	•	Corrected	Total	167	_	_
Year	0.7	27317	•	R-Square		•	•	•
Hydro		•	•	Model		4	16.00	<.0001
Hydro		•	•	Error		154	_	_
Hydro		•	•	Corrected	Total	158	_	_
Hydro	0.2	93609	40	R-Square		•	•	•
Hydro		•	•	harriston	0	1	9.06	0.0030
Hydro		•	•	harriston	1	1	0.05	0.8273
Hydro		•	•	harriston	2	1	15.20	0.0001
Hydro		•	•	harriston	3	1	44.42	<.0001
	Daramata		Fat	imate	StdE		tValue	Probt
	Paramete							
	Intercep	た	26338	78561	0.103271	52	-2.55	0.0117
	harristo	n0	0.00002	36978	0.000007	87	3.01	0.0030
	harristo	n1	00000	21183	0.000009	69	-0.22	0.8273
	harristo	n2	00002	84142	0.000007	29	-3.90	0.0001
	harristo	m3	0.00008	53321	0.000012	80	6.66	<.0001

SUCK at Station 6, Crimora, VA near Rt. 612 bridge Discharge Measured at Harriston, 3 Years Previous Discharge rates Divided by 10000 for Ploting

Partial regression plot showing relationship of THg vs Lag3 discharge rate after correcting for lags 0, 1, and 2. This corresponds to ANOVA table on previous slide.


SUCK at Station 6, Crimora, VA near Rt. 612 bridge Discharge Measured at Harriston, 3 Years Previous Discharge rates Divided by 10000 for Ploting

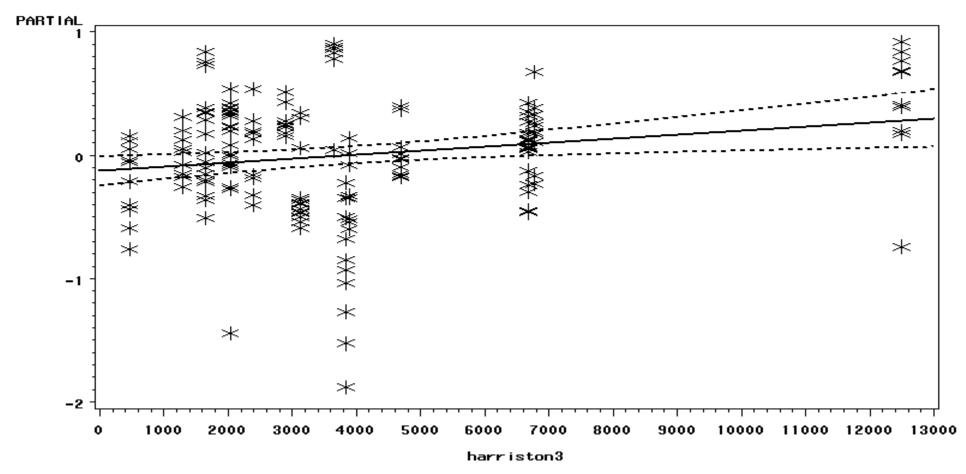
Regression of Log(Adjusted Hg) vs Year SUN at Station 6, Crimora, VA near Rt. 612 bridge


model	rsquare	ratio/rsqr	Source		DF	FValue	ProbF
Year	•	•	Model		15	34.34	<.0001
Year	•	•	Error		505	_	_
Year	•	•	Corrected	d Total	520	_	_
Year	0.504942	•	R-Square		•	•	•
Hydro	•	•	Model		4	22.70	<.0001
Hydro	•	•	Error		507	_	_
Hydro	•	•	Corrected	d Total	511	_	_
Hydro	0.151891	30	R-Square		•	•	•
Hydro	•	•	harriston0		1	0.11	0.7358
Hydro	•	•	harriston1		1	20.68	<.0001
Hydro	•	•	harristo	n2	1	3.63	0.0574
Hydro	•	•	harristo	n3	1	32.03	<.0001
	Parameter	Estima	lte	StdErr	t	Value	Probt
	Intercept	53162215	i15 0	.05914700		-8.99	<.0001
	harriston0	00000162	.59 0	.00000482		-0.34	0.7358
	harriston1	0.00002411	.13 0	.00000530		4.55	<.0001
	harriston2	0.00000760	074 0	.00000399		1.90	0.0574
	harriston3	0.00005307	03 0	.00000938		5.66	<.0001

SUN at Station 6, Crimora, VA near Rt. 612 bridge Discharge Measured at Harriston, 3 Years Previous Discharge rates Divided by 10000 for Ploting

Partial regression plot showing relationship of THg vs Lag3 discharge rate after correcting for lags 0, 1, and 2. This corresponds to ANOVA table on previous slide.

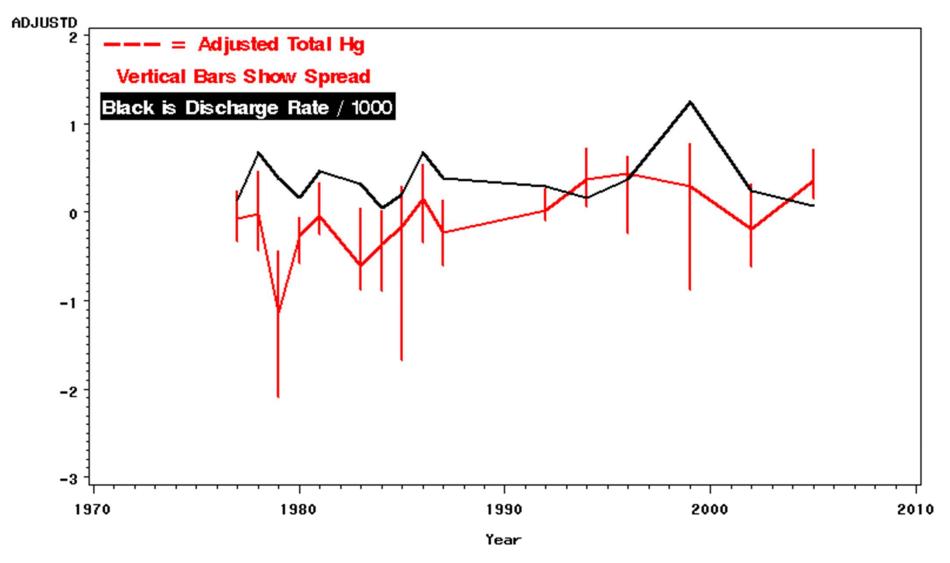
SUN at Station 6, Crimora, VA near Rt. 612 bridge Discharge Measured at Harriston, 3 Years Previous Discharge rates Divided by 10000 for Ploting



Regression of Log(Adjusted Hg) vs Year SUN at Station 7, Grottoes, VA near Grand Caverns bridge

model	rsquare	ratio/rsqr	Source		DF	FValue	ProbF
Year	•	•	Model		15	15.72	<.0001
Year	•	•	Error		156	_	_
Year	•	•	Corrected	Total	171	_	_
Year	0.601895	•	R-Square		•	•	•
Hydro	•	•	Model		4	4.85	0.0010
Hydro	•	•	Error		158	_	_
Hydro	•	•	Corrected	Total	162	_	_
Hydro	0.109319	18	R-Square		•	•	•
Hydro	•	•	harriston	0	1	0.68	0.4123
Hydro	•	•	harriston	1	1	2.13	0.1464
Hydro	•	•	harriston	2	1	4.75	0.0308
Hydro	•	•	harriston	3	1	8.10	0.0050
	Parameter	Esti	mate	StdE	rr	tValue	Probt
	Intercept	419836	6322	0.103267	78	-4.07	<.0001
	harriston0	000006	4860	0.000007	89	-0.82	0.4123
	harriston1	0.000013	2981	0.000009	11	1.46	0.1464
	harriston2	0.000021	3795	0.000009	81	2.18	0.0308
	harriston3	0.000038	4239	0.000013	50	2.85	0.0050

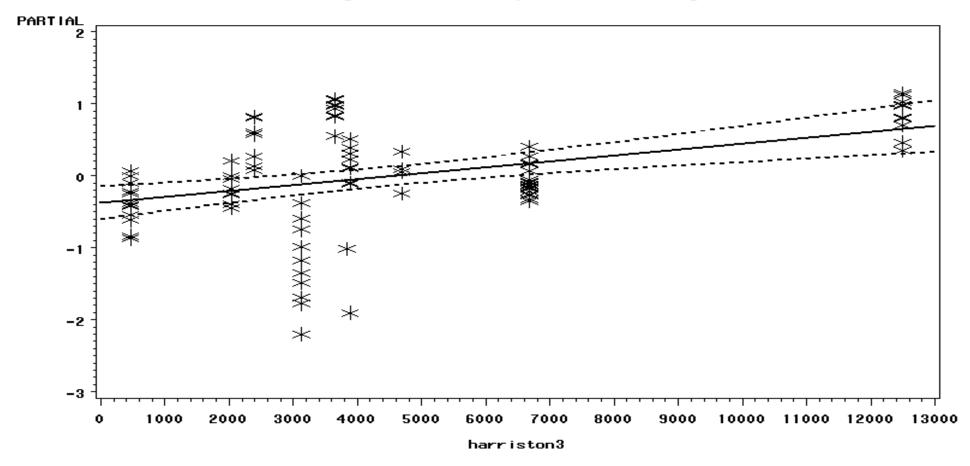
Log(Adjusted Hg) vs Maximum Daily Discharge Rate


SUN at Station 7, Grottoes, VA near Grand Caverns bridge Discharge Measured at Harriston, 3 Years Previous Discharge rates Divided by 10000 for Ploting

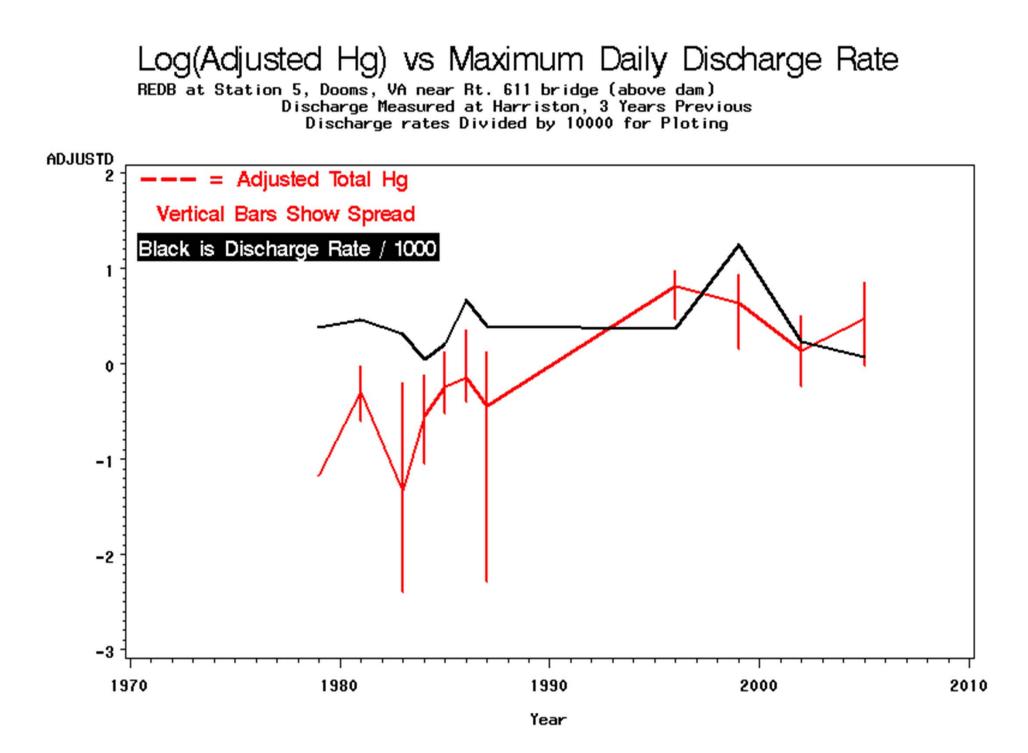
Partial regression plot showing relationship of THg vs Lag3 discharge rate after correcting for lags 0, 1, and 2. This corresponds to ANOVA table on previous slide.

Log(Adjusted Hg) vs Maximum Daily Discharge Rate

SUN at Station 7, Grottoes, VA near Grand Caverns bridge Discharge Measured at Harriston, 3 Years Previous Discharge rates Divided by 10000 for Ploting



Regression of Log(Adjusted Hg) vs Year REDB at Station 5, Dooms, VA near Rt. 611 bridge (above dam)


model	rsquare	ratio/rsqr	Source	DF	FValue	ProbF
Year	•	•	Model	10	27.55	<.0001
Year	•	•	Error	93	_	_
Year	•	•	Corrected Total	103	_	_
Year	0.747618	•	R-Square	•	•	•
Hydro	•	•	Model	4	5.99	0.0003
Hydro	•	•	Error	90	_	_
Hydro	•	•	Corrected Total	94	_	_
Hydro	0.210316 28		R-Square	•	•	•
Hydro	•	•	harriston0	1	4.65	0.0338
Hydro	•	•	harriston1	1	0.02	0.8844
Hydro	•	•	harriston2	1	0.67	0.4135
Hydro	•	•	harriston3	1	21.08	<.0001
Paramet	or	Estimate	StdErr	+Va	lue	Probt
Interce		906267198	0.19378276		.08	<.0001
	-					
harrist	con0 0.0	000338906	0.00001572	2	.16	0.0338
harrist	on1 0.0	000020405	0.00001399	0	.15	0.8844
harrist	on20	000127505	0.00001552	-0	.82	0.4135
harrist	on3 0.0	001023029	0.00002228	4	.59	<.0001

Log(Adjusted Hg) vs Maximum Daily Discharge Rate

REDB at Station 5, Dooms, VA near Rt. 611 bridge (above dam) Discharge Measured at Harriston, 3 Years Previous Discharge rates Divided by 10000 for Ploting

Partial regression plot showing relationship of THg vs Lag3 discharge rate after correcting for lags 0, 1, and 2. This corresponds to ANOVA table on previous slide.

Appendix

• The following slides indicate the process followed to check the models for statistical appropriateness.

Check of Assumptions Underlying ANCOVA, Regression

- Normality checked by
 - Shapiro-Wilk test
 - QQ-plot
 - histogram with fitted normal pdf
- Variance homogeneity checked by
 - Levene test (in the so-called "W50" form)
 - Box plots
- Outliers (in total Hg) checked by
 - Tukey outlier rule
 - Re-analysis with outliers omitted

Example Assumption Check SUN at Station 7 Transform=LOG EXPLANATORY VARIABLE IS YEAR TESTS OF NORMALITY OF ADJUSTD: FULL DATA SET

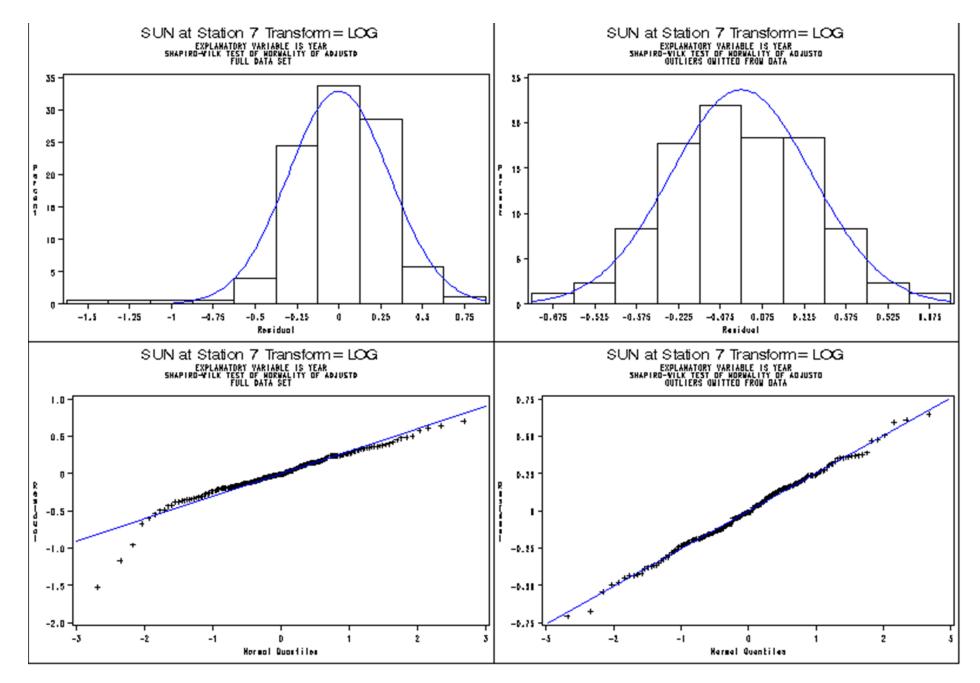
Test	Label	Stat	рТуре	Sign	pValue
Shapiro-Wilk	W	0.939295	Pr < W	<	0.0001
Kolmogorov-Smirnov	D	0.070765	Pr > D		0.0346
Cramer-von Mises	W-Sq	0.138101	Pr > W-Sq		0.0358
Anderson-Darling	A-Sq	1.167841	Pr > A-Sq	<	0.0050

POSSIBLE OUTLIERS FROM ANOVA ON ADJUSTD

Obs	year	ADJUSTD	Pred	Resid	LB	UB
1	1979	-2.10215	-1.14665	-0.95551	-0.72261	0.76721
2	1985	-1.68159	-0.15912	-1.52247	-0.72261	0.76721
3	1999	-0.88512	0.28657	-1.17169	-0.72261	0.76721

LEVENE TEST FOR ADJUSTD

Effect	DF	LEVENE	P_VALUE
year	15	1.45033	0.13063


SUN at Station 7 Transform=LOG EXPLANATORY VARIABLE IS YEAR TESTS OF NORMALITY OF ADJUSTD: Outlier Omitted DATA SET

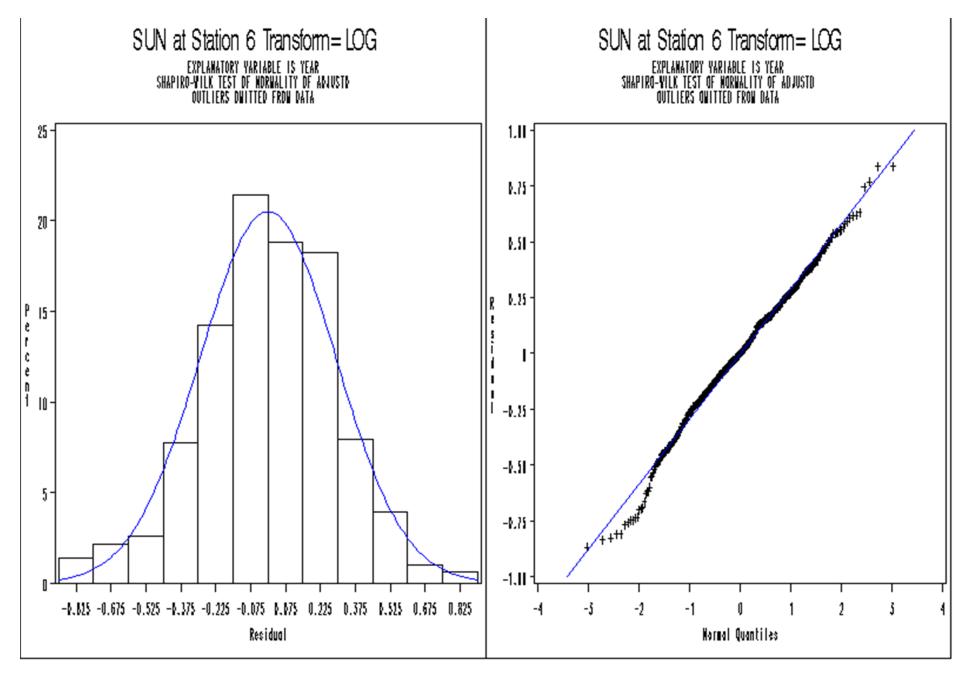
Test	Label	Stat	pType	Sign	pValue
Shapiro-Wilk	W	0.995791	Pr < W		0.9184
Kolmogorov-Smirnov	D	0.039848	Pr > D	>	0.1500
Cramer-von Mises	W-Sq	0.035728	Pr > W-Sq	>	0.2500
Anderson-Darling	A-Sq	0.217891	Pr > A-Sq	>	0.2500

LEVENE TEST FOR ADJUSTD

Effect	DF	LEVENE	P_VALUE
year	15	1.20951	0.27009

Omission of three low values eliminates the significant formal tests for normality. The QQ-plot makes clear that the data are normally distributed.

Tukey Outlier Summary

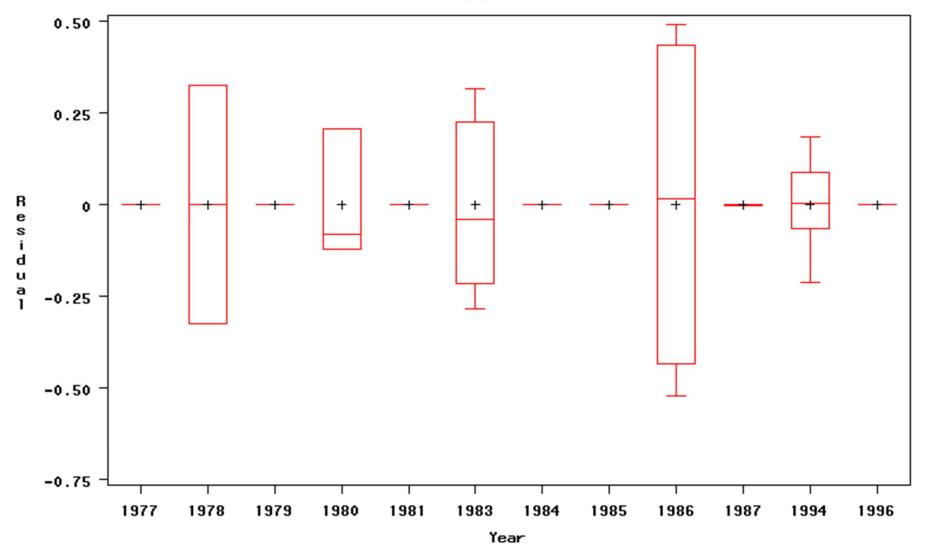

Number of Outliers Found									
	species								
	LMB REDB SMB SUCK SUN								
station									
3	0	1	1	8	3				
5	1	4	4	3	13				
6	1	8	б	3	16				
7	1	2	2	3	3				
8	0	5	1	4	7				

Summary of Shapiro-Wilk Tests

Shapiro-Wilk Tests on Full Dataset				Sł	apiro-	Wilk w	/ Outl	iers O	mitted		
species						spec	cies				
	LMB	REDB	SMB	SUCK	SUN		LMB	REDB	SMB	SUCK	SUN
statio	n					sta	tion				
3	1.000	0.116	0.000	0.008	0.000	3	1.000	0.222	0.135	0.784	0.069
5	0.311	0.000	0.002	0.000	0.000	5	0.414	0.697	0.196	0.451	0.757
6	0.381	0.001	0.043	0.009	0.000	6	0.111	0.089	0.653	0.572	0.007
7	0.878	0.000	0.000	0.000	0.000	7	0.996	0.348	0.621	0.070	0.918
8	0.496	0.071	0.007	0.000	0.004	8	0.496	0.977	0.278	0.965	0.340

So all but one dataset tests as normal after removal of a small number of outliers (ranging from 0 to 8, plus one each of 13 or 16).

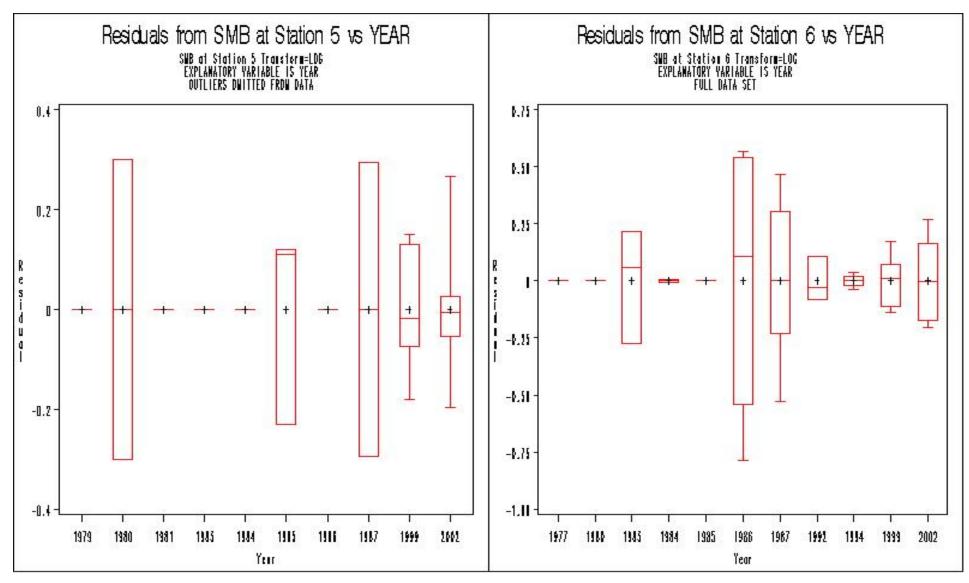
The plots following for the sole exception show a slight skewness, but little reason to question the applicability of normal-based methods.

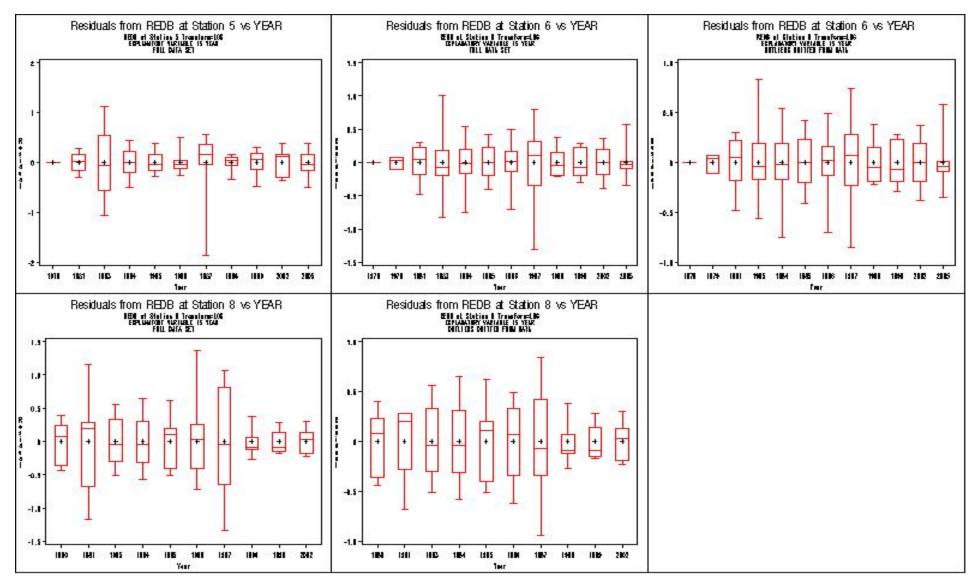

Residua 1

Example of Significant Levene Test for Variance Homogeneity

- The next example makes clear that formal tests for variance homogeneity should not be taken as "true" without further examination.
- The Levene test is highly significant, indicating variance heterogeneity. The box plot makes clear the problem is several years with a single observation.
 - There is no meaningful variance heterogeneity in these data

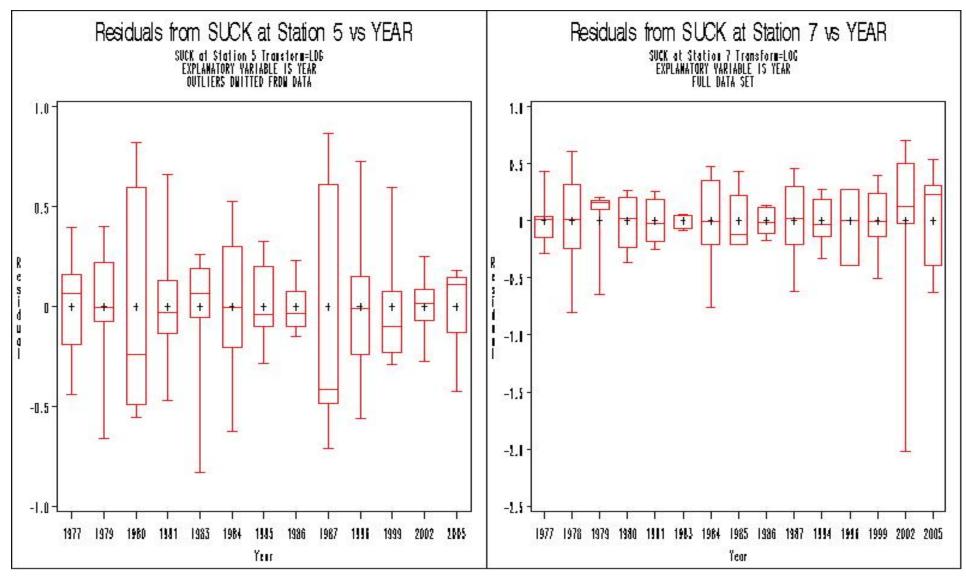
Residuals from LMB at Station 6 vs YEAR


LMB at Station 6 Transform=LOG EXPLANATORY VARIABLE IS YEAR FULL DATA SET

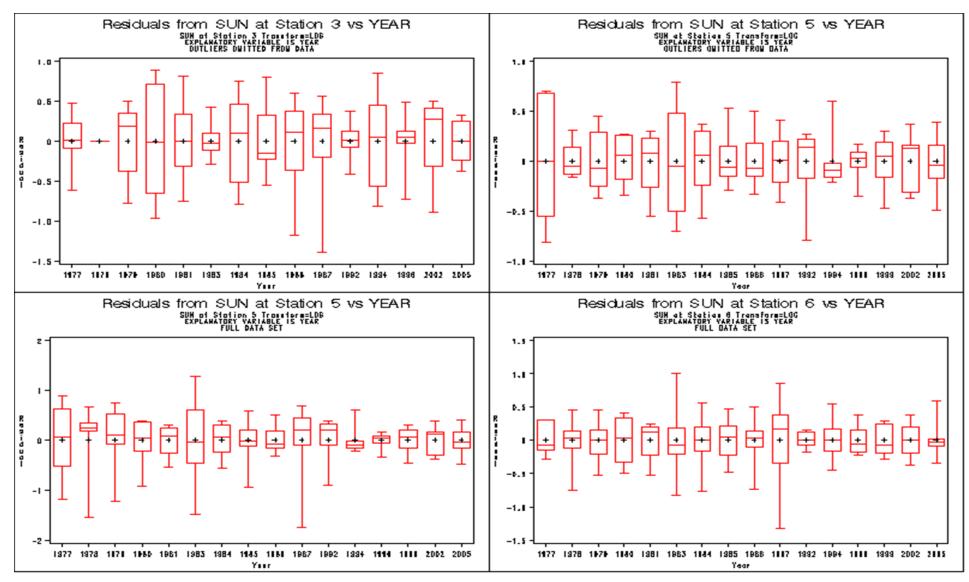

Normal Quantiles

Variance Boxplots

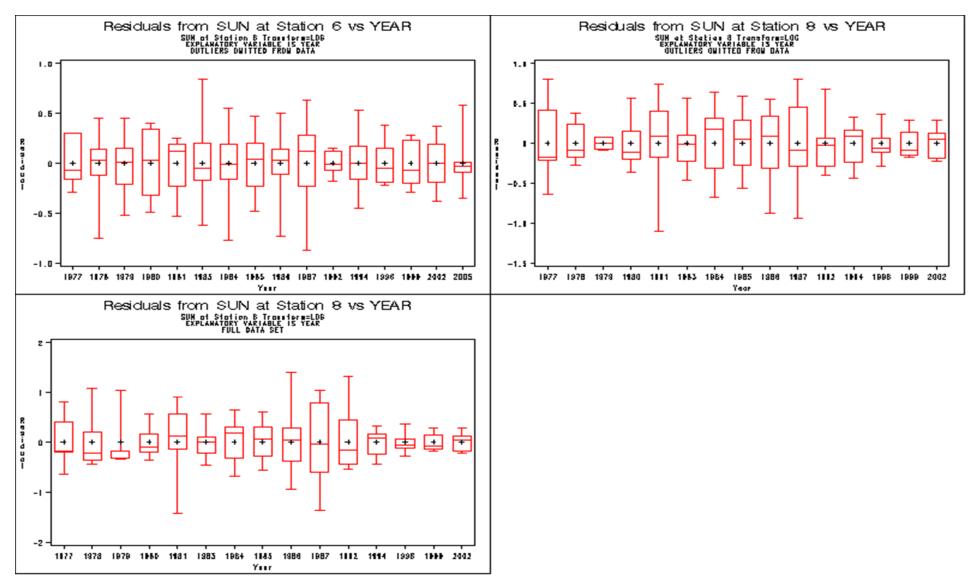
- Boxplot drawn only where a significant Levene test reported
 - If outlier-omitted data had non-significant
 Levene test, boxplot not given for that
- If only an outlier-omitted boxplot is given then Levene test on full dataset was not significant and outlier-omitted analysis not needed



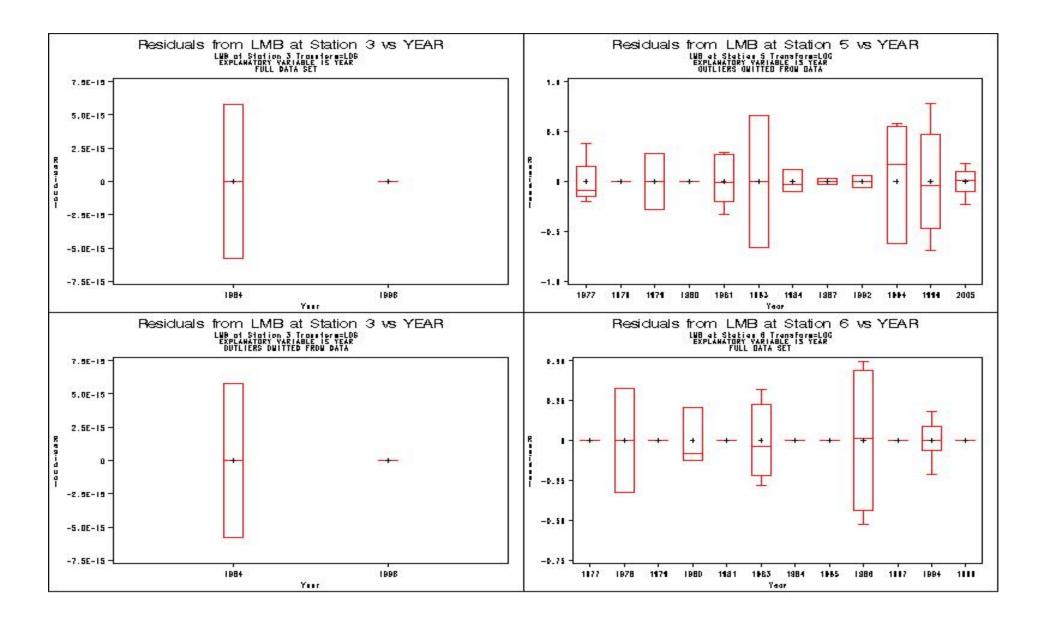
Significant Levene tests arise from years with only 1 or 2 observations


Significant Levene tests at stations 5 and 6 (top row) arise from year with only 1 observation.

Significant Levene test at station 8 is result of reduced variability in latest 3 years. ANOVA and regression results likely little affected.


Significant Levene test for station 5 appears only in outlier-omitted analysis, so not relevant

Significant Levene test for station 7 disappears in outlier-omitted analysis


Significant Levene test for station 3 only occurs in outlier-omitted analysis, so irrelevant.

Significant Levene test for station 5 is cause for concern. Square-root transform eliminates problem, has very little effect on regression.

Significant Levene test for station 6 due to low variance in one year, 2005. Should not have much effect on results.

Significant Levene test for station 8 due primarily to low variance in one year, 1979. Should not have much effect on results.

All significant Levene tests arise from years with only 1 or 2 observations

Summary for Assumptions Check

- Log-transform normalizes results (with a few outliers omitted), and stabilizes variances except for one species and station. Square-root transform eliminates that concern and has only trivial affect on regression results
- Virtue of common approach to all species and stations outweighs technical issue