South River Site Conceptual Model

South River Science Team Expert's Meeting HydroQual October 10, 2007

<u>Outline</u>

- Data analysis of monthly monitoring data
- Incremental loading analysis of low and high flow data
- Temporal analysis of monthly and storm data
- Integrated loading analysis of storm data
- Biological data analysis

Slide 3 10/10/2007

Slide 4 10/10/2007

Slide 5 10/10/2007

Slide 6 10/10/2007

Loading Profiles of HgT and meHg in South River Target Concentration **Negative Load Positive Load** Flow during monthly monitoring (cfs) 4 mHgT-Aug monthly monitoring HgT-Aug monthly monitoring (s/bu) buipeor 10 2 -5 -5 -5 Flow Just after storm peak (cfs) mHgT-August Storm HgT-August Storm Concentration (ng/L) 20 10 10 10/ 10 3 10 2 10-1 -5 1 ð -5 -5 RRM RRM RRM Slide 7

10/10/2007

Slide 10 10/10/2007

Slide 11 10/10/2007

Slide 12 10/10/2007

Bioaccumulation of HgT

- Sources to higher organisms dominated by feeding
- Understanding links between surface water, sediment and prey HgT, meHg would be important for control strategies as part of the TMDL

Fraction of meHg for different general trophic levels (RRM 5)

Slide 15 10/10/2007

Summary Conclusions

- Sources are distributed along River
 - Major sources change with River flow
 - Particle exchange likely an important process during storms
- Results are consistent with soil erosion as primary source of HgT to river
- Methylation in the river is likely a major source of meHg
- Initial bioaccumulation calculations suggest diet is major source of fish-HgT body burden
 - Fish data do not suggest decadal-scale changes in bioavailability

Extra Slides

Slide 17 10/10/2007

Fish Mercury concentration vs Length Category in the South River (RRM 0 to 24), 1 of 2 1970 to 1989 1990 to 2005

Slide 18 10/10/2007

Fish Mercury concentration vs Length Category in the South River (RRM 0 to 24), 1 of 2 1970 to 1989 1990 to 2005 Whiskers are Range, Boxes are 2 SE (approx. 95% Cl) ***** Means are statistically different ($\alpha = 0.05$) for sample sets of different sizes and variances Smallmouth Bass Rock Bass 10 10 * * * * Õ Fish Hg (µg/g wt) n 0.1 0.1 24. O. 16. **1**. 24. 7. 32. **40.** 14. 57. 5. 61. 23. O. 57. O. 65. 2. 126. 8. 76. 23. 48. 42. 0.01 0.01 Largemouth Bass Longear Sunfish 10 10 * * * * ₿ Ē Ē Fish Hg (µg/g wt) 10 Ē ł ð ļ ē 1 ļ h Ĥ B 0.1 14. **16.** б. 0. 7. 3. 10. 8. 9. 10. 8. 15. 11. O. 25. O. 17. 4. 37. 16. 24. 32. 4. 12. 0.01 0.01 10th 25th 50th 75th 100th 10th 25th 50th 75th 100th 5th 5th Length Class (percentile) Length Class (percentile)

> Slide 19 10/10/2007

Slide 20 10/10/2007

Fish Mercury concentration vs Length Category in the South River (RRM 0 to 24), 2 of 2 1970 to 1989 1990 to 2005

Slide 21 10/10/2007

Fish Mercury concentration vs Length Category in the South River (RRM 0 to 24), 2 of 2

Slide 22 10/10/2007

Slide 23 10/10/2007

Slide 24 10/10/2007

