Update: Waynesboro Municipal Landfill and Karst Area

South River Science Team Meeting

April 23, 2002

Waynesboro Municipal Landfill - Site Location Map

• Sources:

- Jax Bowman, Former Public Works Director
- Waynesboro Public Works Dept.
- EPA CERCLA file
- Operational History
 - Mid-1940s? to 1982
 - Small dump site in 1949 (from aerial photo)
 - City of Waynesboro began use as sanitary landfill in ~ 1962
 - Municipal and Industrial waste disposal at the site from ~ 1960 to 1982
 - GE and DuPont main industrial disposers
 - DuPont inorganics, resins, keytones, aldehydes
 - Hg wastes unlikely due to time frame stopped off-site sludge disposal in 1945
 - GE mixed oils, chlorinated solvents, flammable solvents and paint sludge

- Filled ravine
- No indication of previous quarrying operations
- Leachate collection in 1988 (current?)
 - Diversion trench surrounding landfill on south, east, and north sides
 - surface water and leachate seeps
 - discharges to leachate collection pond
 - Leachate collection pond at west end, where bottom of ravine was located
 - Leachate pond discharges to old South River channel via culvert under Rt. 340 and dry stream bed
 - to current South River Channel during high flow ?

Waynesboro Municipal Landfill - 1949 Aerial Photo

Waynesboro Municipal Landfill - 1949 Aerial Photo

Waynesboro Municipal Landfill - 1965 Aerial Photo

- EPA Investigations
 - Preliminary Assessment 1986
 - Desk study and site visit
 - Site Investigation 1988
 - Soil, groundwater, leachate/surface water, and sediment sampling
 - 3 surficial soil samples
 - 4 sediment samples
 - 4 surface water samples
 - 2 groundwater samples from residential wells
 - Samples analyzed for TCL inorganics (inc. Hg) and organics

- EPA Findings
 - No mercury contamination identified
 - Metals antimony, barium, calcium, chromium, lead, silver, cobalt
 - Organics PAHs, toluene, benzoic acid, and 4-methyl phenol
 - All hits were relatively low concentrations

Waynesboro Municipal Landfill - Path Forward

- Limited site investigation:
 - Verify results of EPA's 1988 site investigation
 - Collect surface water, shallow soil/sediment samples
 - Leachate pond
 - Culvert/stream
 - Old South River / stream confluence
 - Old South River channel down-stream of confluence
 - Analyze all samples for Hg (total and dissolved in water samples)

Karst Area

Karst Area - Geologic Map (Gathright, 1977)

Karst Area

- From Gathright 1977 Geology of Waynesboro East and Waynesboro West Quadrangles
 - Karst area believed to be associated with the Shady Formation in sub-surface
 - Not exposed in the area
 - Known to be susceptible to karst weathering
 - Present to the north and south of Waynesboro
 - Borings drilled at western toe of Blue Ridge just northeast of Waynesboro - looking for Shady Formation
 - No carbonate identified up to 365 ft BGS
 - Theorized area is mature karst most of the Carbonate removed/collapsed or is very deep
 - Alternate theories on the area
 - Brecciated zone associated with Blue Ridge thrust faulting

Karst Area

- Genicom RFI documents
 - Site located north of Hopeman Parkway on east side of South River
 - Reviewed RFI reports
 - Shallow alluvial sands and gravels over bedrock aquifer
 - Karst area was not encountered during site investigations

Karst Area - Investigation Techniques

- Tracers
 - Introduced
 - Introduce into known conduit and monitor for presence downgradient in wells or at seeps/springs
 - Fluorescent Dyes rhodamine, fluorecene, optical brighteners
 - Ions chloride, nitrates, nitrites
 - Isotopes iodine
 - Native
 - Natural cation / anion relationships in groundwater at various locations
 - Ca, Mg, K, Na, Cl, sulfate, bicarbonate, hardness
 - Look for distinct gw signature at down-gradient locations such as seeps, monitoring wells, springs

Karst Area - Investigation Techniques

• Geomorphic analysis

- Delineate areas where karst weathering is occurring in sub-surface
- Aerial photographic analysis and ground investigation
- Lineaments
- Fracture patterns
- Land forms sink holes, disappearing streams, springs
- Intrusive investigation
 - Drilling program in suspected karst area

Karst Area - Investigation Techniques

Recommended Path Forward

- Temperature profiling in the South River
 - Detailed investigation of temperature anomalies to identify seeps
 - Water sampling up and down-stream of identified seeps
 - Hg first
 - followed by geochemistry if Hg flux identified
- Let river data guide further investigation of sources if gw seeps w/ Hg flux are identified
 - To determine if Hg sourced from gw plume or sediments
 - May include pore water sampling in sediments, shallow gw sampling adjacent to river, gw sampling further away from river
 - Characterize native geochemistry of gw associated with seep to help determine source