South River Science Team Presentation October 2006

Hydrologic and Hydraulic Analyses
Hydrologic analyses
Rating curve development
Hydraulic analyses

Purpose: to aid in the computation of mercury loads and to determine flood inundation levels for a variety of storm events

South River Hydrology

- Watershed is located in Central Virginia
- Three gages located within the study area
 - Waynesboro (54 years of record)
 - Dooms (17 years)
 - Harriston (63 years)

South River Hydrology -Methodology

Drainage Area at Downstream Limit: 233 square miles

Study Limits
 Upstream: Interstate 64
 Downstream: Port Republic Road

South River Hydrology -Methodology

Discharges were determined for the following recurrence intervals: 1, 2, 5, 10, 25, 50, 100, and 500

 National Flood Flow Frequency Methodology – weighted averages of:
 Gage data
 Rural regression equations

South River Hydrology -Methodology

Standardized USGS regional regression equations for rural areas

At Gage locations - PEAKFQ software that utilizes Bulletin 17B guidelines to perform flood-frequency analysis.

Weighting techniques improve the estimate of peak discharges

Comparison of Discharges at Gage Locations

	Regression Discharges (cfs)								
Gage Location	1 year **	2 year	5 year	10 year	25 year	50 year	100 year	500 year	
At Harriston, VA	3139.2	3258.2	6091.2	8539.0	12291.9	15473.5	19073.5	29006.0	
Near Dooms, VA	3442.4	3569.1	6684.2	9378.2	13510.1	17011.2	20967.5	31850.2	
Near Waynesboro, VA	4299.7	4452.3	8384.5	11800.2	17058.4	21518.5	26549.0	40317.3	

	Gage Discharges (cfs)								
Gage Location	1 year **	2 year	5 year	10 year	25 year	50 year	100 year	500 year	
At Harriston, VA	2336.7	2690.0	5997.0	9457.0	15810.0	22390.0	30940.0	61450.0	
Near Dooms, VA	3181.8	3623.0	7766.0	11960.0	19450.0	27010.0	36650.0	69960.0	
Near Waynesboro, VA	5119.0	5286.0	11110.0	16380.0	24770.0	32340.0	41110.0	66770.0	

** Extrapolated

Final Discharges Obtained by Weighting the Regression and Gage Discharges

Weighted Discharges (cfs)										
Gage Location	ocation 1 year** 2 year 5 year 10 year 25 year 50 year 100 year 500 year									
At Harriston, VA	2513.0	2722.4	6008.3	9280.7	14826.5	20105.0	26615.5	48424.5		
Near Dooms, VA	3459.0	3613.5	7420.6	10804.5	16085.9	20788.0	26371.5	43762.9		
Near Waynesboro, VA	5147.0	5237.2	10786.1	15531.3	22759.1	29083.0	36385.8	57831.2		

Weighted Discharges (cfs)									
Location	1 year**	2 year	5 year	10 year	25 year	50 year	100 year	500 year	
At Downstream Study Limits	5198.0	5303.0	10774.2	15477.2	22666.8	28925.2	36115.8	56935.6	

** Extrapolated

Rating Curve Development

Defines the relationship between the water stage (elevation) and flow at a crosssection in a channel.

Convert flow depth measurements in a channel to flow rate

Estimate water surface elevations for storms of specific return intervals.

Rating Curves for the South River -Methodology

Structures (i.e., bridges, culverts)
 CulvertMaster software
 Considers inlet and outlet control conditions
 Uses gradually varied flow analysis for computing the upstream water surface elevation (WSEL)
 Uses general broad-crested weir equation in

case of roadway over topping

Rating Curves for the South River-Methodology

Natural (i.e., valley) cross sections
 FlowMaster Software
 Water surface elevations computed using the Normal Depth Method (Manning's equation)
 Variables: manning's roughness, channel slope, wetted perimeter, channel area

Rating Curve At Broad Street Bridge

Rating Curve At Sampling Cross-Section No.13.1

Natural Cross-section No.13.1 🔶 Station Data Bewatton (#) 0 -Station (ft)

URS

Hydraulic Analyses

Purpose: to compute water surface elevations along the river for a wide variety of storm events (i.e., recurrence intervals)

U.S. Army Corps of Engineers HEC-RAS Program

GIS-based Watershed Information SystEm (WISE) platform

Hydraulic Model – Input Data

Topography - Cross sections
Coefficients (manning's n values, expansion/contraction)

Structure data
 Bridges, Culverts

Discharges

Hydraulic Analyses - Method

Sub critical, step-backwater analysis
 Calibration – using high-water mark data, gage height data, and sampling data

Hydraulic Model – Example

Floodplain Delineation

Next Steps

Finalize rating curve development
Conduct hydraulic modeling
Delineate floodplain boundaries

Completion date: March 2007

