

Progress Report ^{sc} Phase I System Characterization: Ecological Study of the South River and a Segment of the South Fork Shenandoah River

Progress Updates:

- o Surface water modeling
- o Storm event data
- Baseline surface water loading
- o Sediment data
- Tissue methylmercury data

Loading Investigations

- Hydrologic and Hydraulic Analyses Progress Update:
- HEC-RAS Hydraulic model complete; calibration and review in progress
- Floodplain mapping in progress
- Histogram analysis for flows at the Harriston Gage
- South River hydrologic model complete; review in progress

Storm Event Sampling

Sampling Update:

- Target one storm event each season; sample at 8 bridge locations during
 - baseline conditions
 - 3-hr intervals during rising discharge
 - 1, 3, 5, and 7-days during falling discharge

• Three storms:

Date	Peak Flow at Harriston (CFS)	Storm Return Interval (yrs)
28-Jun-06	2,640	0.2
31-Aug-06	3,010	0.31
16-Nov-06	3,690	0.44

Influence of Storms on Concentrations of THg and MeHg on Particles

THg (ppm TSS)

MeHg (ppb TSS)

Baseline Water, Sediment, and Biota Sampling

Data sets include:

• 13 baseline stations in study area; 3 reference stations

Matrix/Type	March	April	May	June	July	August	September	October	November	December	January	February
Physical Media												
Surface Water	~	>	>	~	>	>	>	>	~	>	~	>
Sediment	~	>	>	~	>	>	>	>	~	~	~	~
Biological Tissue												
Filamentous algae			>			>				>		~
Aquatic Plants						>						
Crayfish	~	~	>	~	>	>	>	~	~	~	~	~
Corbicula			>			>				>		~
Diptera			>			>				>		~
Ephemeroptera			>			>				>		~
Trichoptera			>			>				>		>
Centrarchidae			>			>				>		~
Cyprinidae (pool)			>			>				>		~
Cyprinidae (riffle)			>			>				>		~
Aquatic Community Assessments												
Invertebrates			~			>				~		~
Fish			>			>						

Recent Changes to the Baseline Sampling Program

In October, the NRDC agreed to removing several analytes from the baseline sampling program. They include:

• PAHs, OCPs, and Metals (Cd, Cr, Cu, Pb, Se, Zn) in Surface Water

• PAHs and Metals (Cd, Cr, Cu, Pb, Se, Zn) in Sediment and Crayfish

The study resulted in 8 months of data for these constituents.

Reach Specific Baseline Loading

Methodology:

- Used drainage area based interpolation to calculate discharge (Q) at each South River sampling location in accordance with USGS guidance.
- O Calculated loading by:
 - multiplying average concentration of analyte (n=3) by Q to get a base loading rate
 - subtracting the loading rate at an upstream location from the downstream location (propagated analytical errors) to get a reach specific loading rate
 - Dividing the reach specific loading rate by reach area (to account for difference in reach sizes) to get a reach specific flux

Interpolated Flows For Baseline Loading

Reach Specific Filtered Total Mercury Flux

Spring and Summer Results:

- Highest fluxes observed between RRM-2.0 and RRM-3.0 in April
- Generally positive fluxes in Spring along the length of the river
- Positive fluxes continue during summer months to RRM-11.8 and trend near zero below RRM-11.8

Reach Specific Filtered Methylmercury Flux

Spring and Summer Results:

- Highest fluxes observed at RRM-8.7 in April and May
- Strong increasing trend between March and April MeHg fluxes at most locations
- Generally positive fluxes during summer months above RRM-11.8 and trend near zero below RRM-11.8

Sediment Mercury Data

Total Mercury:

- Concentrations in sediment relatively constant at stations during six months of collection
- Noticeable increase at RRM-3.0 in July (510 µg Hg/g OC at RRM-3.0 in July); not elevated in August

Sediment Mercury Data

Methylmercury:

- Data indicate spatial variability in MeHg concentrations in interstitial sediment at individual locations
- Strong increasing trend between March and April data
- Highest concentrations at RRM-8.7

Methylmercury in Dipteran Tissue Phase I System Characterization Ecological Study

Methylmercury in Fish Tissue

Methylmercury in Sunfish Tissue Phase I System Characterization Ecological Study

Methylmercury in Fish Tissue

Methylmercury in Fish Tissue

Methylmercury Tissue Summary

- Seasonal decrease in invertebrate MeHg tissue concentrations at most locations for most invertebrates from Spring to Summer
- Corbicula MeHg tissue concentrations remained relatively constant
- Seasonal increase in fish MeHg tissue concentrations at most locations from Spring to Summer

Scheduled Activities for 2007

- Finish Phase I, Year 1 studies:
 - Complete monthly baseline monitoring along the South River and reference areas (last sampling Feb. 2007)
 - Complete 4 quarters of storm event sampling (last quarter ends March 2007)
- Data evaluations and Year 1 Report (April)
- Meet with NRDC in beginning of May
- Currently planning for Year 2 studies

Questions?

Baseline Flow Discharge Estimations

Methodology:

- Calculated drainage area for all three gages and all sampling locations in South River using USGS Elevation Derivatives for National Applications (http://edna.usgs.gov/)
- Averaged the mean daily discharge at Waynesboro, Dooms, and Harriston gages during the days of surface water sample collection for each monthly event
- o Interpolation equations:
 - For stations between two gages:

$$Q_s = \frac{Q_u (DA_d - DA_s) + Q_d (DA_s - DA_u)}{DA_d - DA_u}$$

• For stations below Harriston:

$$Q_s = \frac{Q_u}{DA_u} \times DA_s$$

• Where Q = discharge in CFS; DA = Drainage Area; u = upstream; d = downstream; s = station

Perry, C.A., Wolock, D.M., and Artman, J.C., 2004, Estimates of flow duration, mean flow, and peak-discharge frequency values for Kansas stream locations: U.S. Geological Survey Scientific Investigations Report 2004–5033, 651 p.

Baseline Flow Loading Calculations

