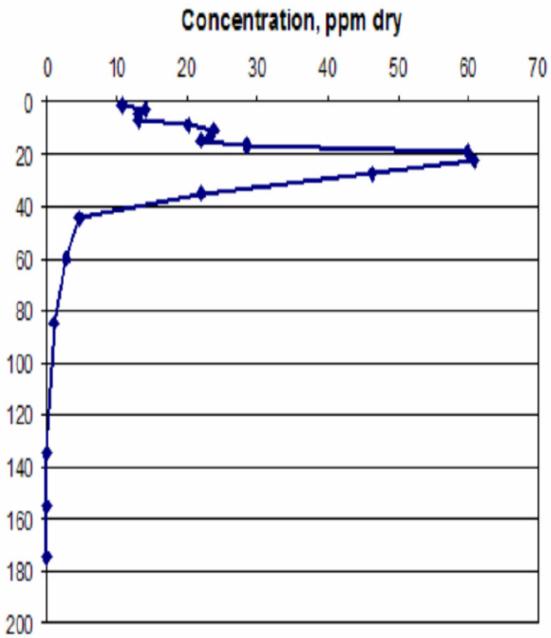
### Mercury Source Tracing and Mechanistic Studies Update

Ralph Turner RT Geosciences Inc Richard Jensen Unique Environmental

# Synopsis from October

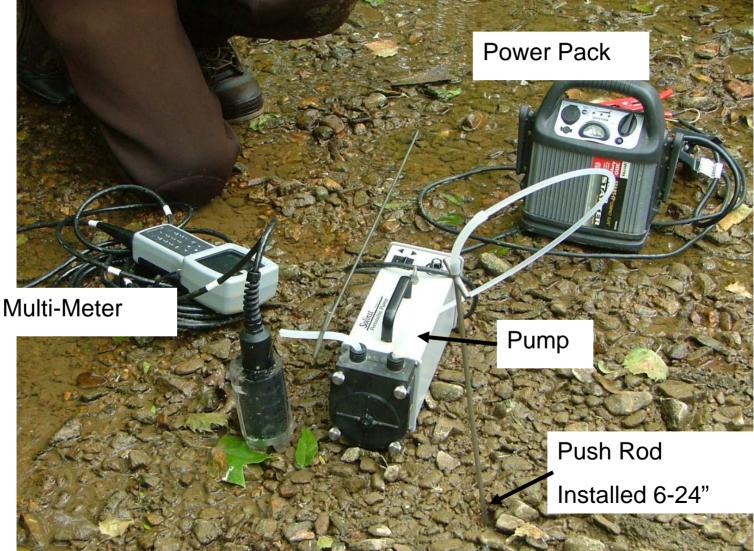
- Getting closer to answering the question "How is Hg getting into the South River in bioavailable form?"
  - Very likely not from point source(s)
  - Likely related to presence of Hg in floodplain/bank/bed solids in form(s) that can be released continuously into surface water
  - Role of shallow alluvial groundwater still being quantified

# Activity Since October


- Storm (large) sampled in river near plant site (results not presented here)
- Additional hyporheic water sampling at BP
- Analysis/interpretation of additional "diffusion bucket" data.
- Additional results for soil leaching study.
- Planning and equipment acquisition.

### Basic Park Intensive Study Site









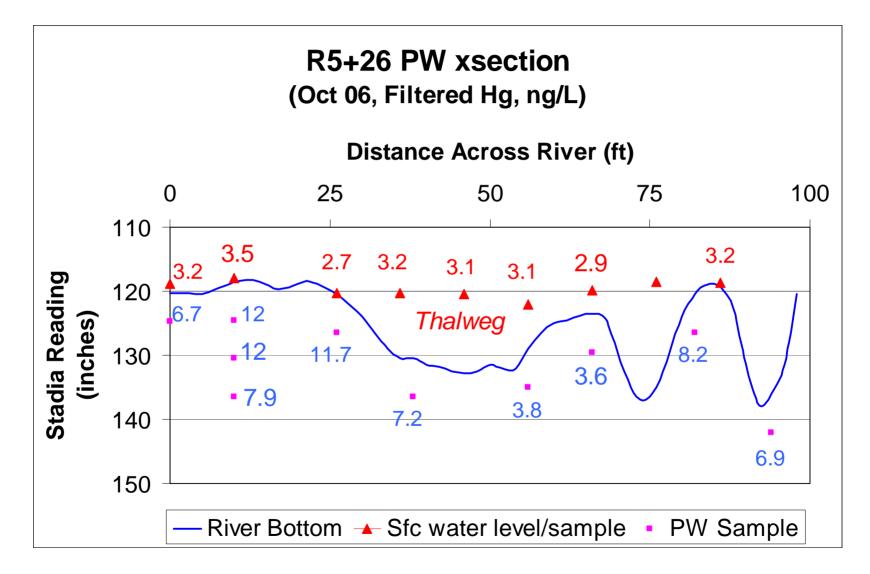

Sampled by University of Delaware-2005

### Pore/Hyporheic Water Sampling Equipment




Also measure water level in manometer relative to river water level

#### Hyporheic Water Stations July 2006, Including one SW




### Hyporheic Water Transect Dissolved THg (ng/L)-July 2006



[Hg] in streambed hyporheic zone generally 2x to 3x surface water (SW) value

### **Repeat In October 06**



### Other Gravel Bar Observations

- If you can partly accept higher electrical conductivities as groundwater indicator...
  - Conductivities suggest SW-related, not GW
- Pressure differentials suggest downward movement of water into gravel in study location.

# Tentative Gravel Bar Thoughts

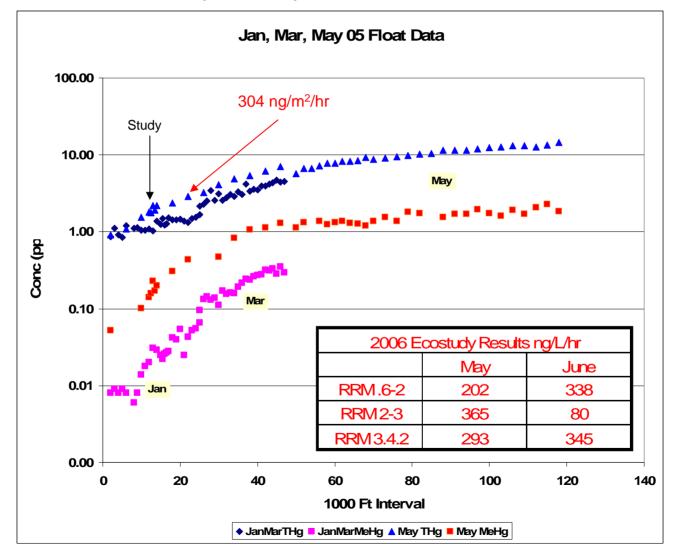
- Are gravel bars important Hg storage compartments?
- Are gravel bars high-surface area sources, acting like "packed columns"?
- Are gravel bars acting somewhat like flux chambers? Retarded flow, rising concentration, etc...
- Any way to use a gravel bar as an investigative tool? For non-mud locations.

### **Diffusion Buckets**



Intended as a device to isolate a section of near-bank sediment from continuous "flushing" by upstream surface water, i.e., a simplified benthic flux chamber




### Flux Bucket Locations

#### May, July, Sept 06



#### **Close Interval Filtered SW Results**

Fairly Steady Rise in Dissolved



#### Diffusion Bucket Results May/July/September 06

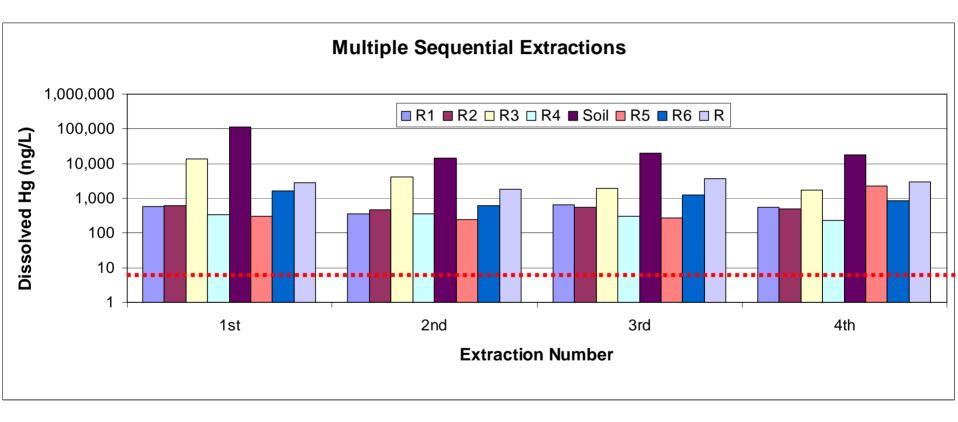
| Location   | Time = 0        | Time $= 3$ | Time = $6$ | Time = 23 | Avg Flux   |
|------------|-----------------|------------|------------|-----------|------------|
| May        | (hr)            | (hr)       | (hr)       | (hr)      | (ng/m²/hr) |
| <b>B</b> 3 |                 |            |            |           | 323        |
|            |                 |            |            |           |            |
| July       |                 |            |            |           |            |
| B3         |                 |            |            |           | Negative   |
| B4         |                 |            |            |           | 295        |
|            |                 |            |            |           |            |
| Sept       |                 |            |            |           |            |
| B1         | <b>2.8</b> ng/L | 3.2        | 3.2        | 3.6       | 4.8        |
| B2         | 2.8             | 2.5        | 2.6        | 3.4       | 6.1        |
| B3         | 2.9             | 10.3       | 17.6       | 30.9      | 208.8      |
| B4         | 2.9             | 3.8        | 2.8        | 23.7      | 201.5      |
| B5         | 3.2             | 2.5        | 2.7        | 4.3       | 7.6        |

Soil added

#### "New" Near Bank Results Sep/Oct 06

- Sediments perhaps more "localized" than previously expected? Flux buckets now confirm.
- Near-bank sediments sometimes appear to release Hg at rates comparable to apparent "whole" river releases.
- But in many cases, release rates are much lower than river average.
- This might point to the other substrates as important contributors: sand, gravel, cobble, etc.

### Soil/Sediment Leaching Studies - Continuing


Objective: Determine whether Hg release from bank soils and near-bank sediments follows a "simple" desorption equilibrium.

### **Experimental Approach**

- Collect representative soil and sediments from study area at Basic Park.
- Perform four (4) successive extractions of each sample with DI\* water at solution/solid=10 (40 mL/4g)
- Analyze extracts for filtered (0.4 micron) mercury.
- Compare leaching patterns.

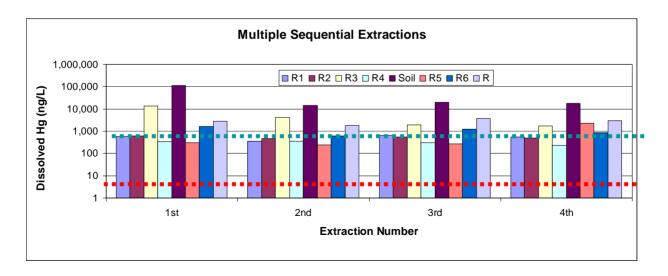
\*River water for ongoing work!

#### Extraordinarily High Results (Using DI Water)



Similar aqueous [Hg] across all four extractions. Bank soil produced highest aqueous [Hg]

# May 2006 Leaching Caveats


- D.I. Water may be unrealistic extraction fluid. Should compare actual river water.
- All that passes a 0.4 µ filter is not truly bioavailable
  - particulate-attached, colloids
  - DOC bound
- Does extraction routine produce an unrealistic amount of DOC or colloidal particles? What is nature of "Particle Effect"

### D.I. vs. River Water

#### for soil extractions

| Extraction Water    | Result (ng/L) |  |  |
|---------------------|---------------|--|--|
| D.I.                | 2500          |  |  |
| South River at SR01 | 936           |  |  |

While much lower, 936 ng/L still represents a strong driving force for mass transfer of Hg.



#### Centrifuge in SRST Office Beckman GS-6



### Two Main Purposes for Centrifuge

- Ultrafiltration of water samples to remove colloidal particles and give a better measure of "dissolved" - better measure of "bioavailable"
- Rapid removal of pore water samples from fine sediments. Another way to measure "driving force" for mass transfer of Hg to water column.

# Millipore Ultra-Filtration Tubes



### Path Forward-Leaching Study

- Verify high aqueous [Hg] associated with the sediments by spinning porewaters from shallow sediments by centrifuge.
- Repeat selected extractions with filtered river water (high/low spec cond) from SR-01 (Lyndhurst)
- Characterize the physical/chemical nature of Hg in these kinds of leachates (e.g., volatility, molecular weight, reactivity)
- Use centrifuges in SRST office and Seattle to begin characterizing truer "dissolved" samples