# Mechanistic Source Studies Update

Turner/Jensen July 2007

# General Objectives

- Resolve/rank contributions of Hg sources at Basic Park study reach (RRM2)
- Define mechanism(s) by which Hg in bioavailable form is released from floodplain soils and bed sediment.
- Expand/refine understanding of Hg source(s) at Plant reach (RRM<0.5)

### Basic Park

### Reasons for Study Site Selection

- NRDC Ecostudy location
- Presence of near-bank elevations in THg and MeHg
- Ease of access/publicly owned
- Within river continuum of max rate of increase in "dissolved" Hg

# May 2006 SW Results

#### Confirmation of THg-DIS Inputs



# 1st Half Year Indications

- Confirmed dissolved loading inputs
- Large point-point variations in SW, seds, pore water, flux. Some correlation.
- Very large extract concentrations
- Muddy areas under-contributing
- Groundwater likely 1-10% contribution
- Gravel beds (and other) may be larger contributor of dissolved loading input

# 2nd Half Year Goals

- Further characterize gravel beds as source
   longitudinal arrays of sample points
- Additional extractions, soft sediment pore waters, centrifuge, ultra-filter
- Additional shallow well installation and sampling
- Refine indications

# Hypothesis

desorbs and emerges here.



# Longitudinal Gravel Series (2+)

- Pore waters at 6-8 or 12 inches depth
- Near bottom surface waters
  - Probe tip placed on gravel bottom surface
- Thalweg surface water
- All filtered
- Field readings with YSI meter
- Bottom and SW elevations

# Equipment



# January 07 Results





### **Extended Locations**



### April 07

January 07



# Longitudinal Results April



# Island Channel

Upstream Entry



### Island Channel

#### Downstream Exit



# Additional Transects April



### **Concentration Perspective**



# Longitudinal Channel Set



# Longitudinal Channel Results

All Near Bottom



# Gravel Bar Indications

- Important area of THg-DIS input
  - Wide variations in water concentrations
- Surface water < Near Bottom < Sub-gravel</li>
   Indicates driving force for THg transfer
- Subtle indications of flow through gravel, driven by head differences
- Subtle indications of elevated THg emergence from gravel bar downstream

# MHg Survey in May/June 07



# Monitoring Wells

Forestry and Basic Park

## Well Locations



## Forestry Well Results

Dissolved, ng/L



# Basic Park Well Results

Dissolved, ng/L



# Example Calculation 5/25/05

- 15 CFS estimated (linear) discharge increase, SR01 to Dooms (Tribs decrease GW share).
- THg-DIS increase of 1.17 g/day.
- 32 ng/L GW needed to totally account for Hg input.
- Average of all (believed) GW results: 1.62 ng/L or 5.1% share for GW.
- Max value of 6.25 ng/L would be ~20%.
- Minimum (detected) value of 0.24 would be <1%.
- Median value of 0.86 would be  $\sim 2.7\%$ .



# Groundwater Indications

Shallow/Local/ Basic Park

- Water level tests have shown measurable gradient at BP. (None measurable at Forestry, but that's where highest THg!)
- Groundwater should not be discounted.
- Groundwater probably not the major source, but it might be #2 in importance.
- Groundwater should be more broadly characterized.
- If Basic Park is "representative", groundwater THg-DIS share for whole river might be between 1% and 10% on average.
- Forestry (and any similar) situations require additional scrutiny.
   FSMW2 = 54 ng/L in Oct 05. Always somewhat elevated. Is this a "pore water" as opposed to a Mr. Coffee? Will a more thorough GW survey find other such examples?

### Pore Waters/Extractions

### Centrifuged Pore Waters Feb 07



# Sediment Pore/Extract

April 07

![](_page_30_Picture_2.jpeg)

### Extracts/Pores/Sediments

April 07

![](_page_31_Figure_2.jpeg)

### Extract Predicting Pore Water

![](_page_32_Figure_1.jpeg)

### Sediment Predicting Pore Water

![](_page_33_Figure_1.jpeg)

# Extract/Pore Water Indications

- Wide variability on short spatial interval
  Can't just go measure bank seds at RRM and be certain of anything
- "Hot Spot" sediments show themselves in various measures: THg, pores, extracts, fluxes... Surface water not good predictor. Eddy influence.
- But cannot suggest single measure as best surrogate, especially to predict lower end
- Bank soils can yield much higher THg extracts
- Results suggest river is way out of equilibrium for dissolved THg.

### Way-Out-Of-Equilibrium Implications

- Very large thermodynamic driving forces
- Areas of low flow (eddies, backwaters, gravel beds) can reach very high concentrations.
- Discrete dissolved inputs might persist along great lengths of river.

# Special Extraction and Ultrafiltration Studies

# Objectives

- Determine extent and nature of desorption of Hg from bank soil and bed sediments.
- Measure or estimate speciation of desorbed forms (molecular weight, gaseous, reactive).
- Determine if bank soil extracts stimulate methylation (using BFC as in situ lab)

### Exhaustive Extractions and Speciation

- 4 grams of soil/sediment in 40 mL of SR01 water (<1 ng Hg/L, SC 150-200 vS/cm).</li>
- Mix by rotation (30 rpm) for 4 hrs.
- Filtration w/0.4 micron pore size filter.
- Repeat "x" times using same sample.
- Only 1<sup>st</sup> extraction used to measure DGM, "reactive" and <5000 MWCO fraction.

# Speciation

### • DGM=Dissolved Gaseous Hg,

- Likely Hg(0)
- Not bioavailable but easily oxidized to Hg(II)
- Reactive=Easily reducible to Hg(0)
  - Likely inorganically complexed Hg(II), incl Hg<sup>2+</sup>
  - Highly bioavailable (but some debate)
- <5000 MWCO=Low MW compounds
  - Likely inorganically complexed Hg(II) and simple organic Hg complexes, e.g. acetate
  - Bioavailability undetermined

![](_page_40_Figure_0.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

# Indications (so far)

- Release patterns from both soil and sediments suggest "exchange" reaction, dissolution of sparingly soluble compound or presence of "colloid-associated" Hg.
- Much of the Hg extracted from soil and sediment appears to be "high molecular weight" (>5000 MWCO) but...
- Ultrafilter medium binds significant fraction of inorganically complexed Hg, e.g., Hg(OH)<sub>2</sub>
- DGM [Hg(0)] and reactive Hg [Hg<sup>2+</sup>] data pending.

# Amended Flux Chambers

1st Chemical Amendment Experiment Attempted on SR

# Purpose of Experiment

- Method development: To determine if a particular locale is a "factory" for MHg, or merely a transfer point.
- Hypotheses: A step increase in dissolved THg in a MHg production locale will result in a measurable step increase in MHg production within 4 to 8 hours. And the converse. And that this can be a useful tool.

![](_page_47_Picture_0.jpeg)

![](_page_47_Picture_1.jpeg)

![](_page_47_Picture_2.jpeg)

#### Multi-Use Pump Amendment Injection Sampling Filtering

![](_page_48_Picture_1.jpeg)

![](_page_48_Picture_2.jpeg)

![](_page_48_Picture_3.jpeg)

# Experimental Design

|       | Mud-1   | Mud-2    | Rock-1  | Rock-2  |
|-------|---------|----------|---------|---------|
| Day-1 | Natural | Natural  | Natural | Natural |
| Day-2 | Natural | Amended  | Natural | Amended |
| Day-3 | Amended | Natural  | Amended | Natural |
|       |         |          |         |         |
|       |         | Time = 0 |         |         |
|       |         | 1 hr     |         |         |
|       |         | 2 hrs    |         |         |
|       |         | 4 hrs    |         |         |
|       |         | 8 hrs    |         |         |

## Amendment

- Soil from elevated (Hg) layer of R4 bank
- Filtered water from SR-01 (Lyndhurst Ave bridge)
- 10% slurry shaken for ~ 2hrs
- Centrifuged and decanted
- Filtered at 0.45 micron
- Submitted to lab for THg/MHg
- Result: ~ 680 ng/L THg & ~ 0.46 ng/L MHg
  May 06, Ecostudy, RRM2.0, dissolved: ~ 2.5 & 0.2
- Injected 375 ml into 8000 ml chamber, should have produced a ~ 32 ng/L increase in THg in chamber

### Plant Reach

# 1st Half Year Indications

- Confirmed base flow loading of ~ 1 g/d THg.
- Flood flow loading > 1000 g/d instantaneous.
- Flood peak loading = split between upper watershed and below footbridge. ~5% plant.
- Day 9 after flood, ~46% load from plant. ~ 1.4 g/d.
- As flood subsides, active plant becomes more important, as fraction of total load.
- Significant THg inventory in eroding banks downstream of footbridge.

# 2nd Half Year Goals

- Very close interval sampling of SW, pore water, and sediments in plant reach.
- Sampling flowing tributaries and outfalls.
- Material balance across plant reach eliminated from program.

## Surface Water + Tribs

Feb 07 Base Flow

![](_page_54_Picture_2.jpeg)

# Right Bank Dominates SW

#### Dissolved THg (ng/L)

![](_page_55_Figure_2.jpeg)

# Average Close Interval Results

+ Sediments

![](_page_56_Figure_2.jpeg)

### Plant Reach Indications Loading Inputs

- At base flow, upper watershed, active plant reach, and downstream of footbridge all contributing importantly. (~ 1 g/d THg)
- Under flood conditions, upper watershed and downstream of footbridge most important. Active plant reach less important. (1000 g/d THg plus)
- Extreme importance of plant reach under flooding conditions now unlikely

### Plant Reach Indications Base Flow

- Influence of active plant (right) side (probably including 001) clearly visible in SW, but not in pore water or sediments much below footbridge.
- Eroding banks, downstream of footbridge, probably more important driver for sediments.
- Sediments a likely additional driver for SW, as seen in most pore waters.

### Plant Reach Indications Base Flow, Continued

- No evidence of an unusually large source beneath gravel in plant reach.
- Eroding banks downstream of footbridge probably a factor in base and flood flow.
- Tribs probably negligible.