Use of Experimental Stream Mesocosms to Assess Mercury Uptake in Periphyton

Robert Brent

October 5, 2010

Why a Mesocosm?

• Growing need for manipulative experimentation

- Test elements of working conceptual model
- Test potential remedial strategies
- Mesocosms provide an appropriate platform for performing manipulative experiments
 - Level of environmental realism, while still allowing control of critical variables

Objectives

- 1. Design a mesocosm system that can reasonably approximate the South River
- 2. Test the relative importance of waterborne or sediment-derived mercury in determining uptake into the biological community
- 3. Test the relative importance of hyporheic flow in determining Hg uptake

Mesocosm Design

- Six, 8-ft PVC channels
- Loaded with
 - 1 kg depositional sediment
 - 8 kg sand/gravel
 - 1 kg guzzled sediment
 - 80 rocks

3.25 in

Vs.

• <u>Experiment #1</u> – Field testing of mesocosm design

• Is Hg uptake in mesocosm periphyton similar to river periphyton?

5 Rock Trays In River

• <u>Experiment #1</u> – Field testing of mesocosm design

• Periphyton was sampled at 2, 4, and 6 weeks of colonization

- What is the relative importance of waterborne or sediment-derived mercury in determining uptake into the biological community?
- 2x2 experimental design with clean/contaminated water and clean/contaminated sediment

		Sediment Source	
		North River	South River
		(14 – 17 ng/g Hg)	(5200 – 8000 ng/g Hg)
	North River	Control	Hg in Sediment
Water Source	(1.2 ng Hg/L)		
	South River	Hg in Water	Hg in Sediment
	(47 ng Hg/L)		and Water

- What is the relative importance of hyporheic flow in determining Hg uptake into the biological community?
- Similar set-up to previous experiment, but with and without hyporheic flow

Findings

- The mesocosm design provides a relatively inexpensive, useful tool for experimentation in the South River
 - Provides a level of environmental realism not easily achieved in the laboratory
 - Provides an opportunity to experiment that is not easily achieved in the river
 - For periphyton Hg uptake, mesocosm provides a reasonable surrogate to the river

Findings

- Under the mesocosm conditions, waterborne mercury played a much larger role in biological uptake than sedimentderived mercury
 - Obviously upstream sediment can contribute to downstream water column
- Advective flow through contaminated sediment didn't increase biological uptake in mesocosm experiments

Options for Next Steps

- Address Conceptual Model Questions
 - Mercury speciation
 - Impact of bank soils
- Test Remediation Options
 - Amendments
 - Treatment approaches

Pre-Upgrade Preliminary Results

