South River Conceptual Site Model RRM 0 to 5

South River Science Team Meeting April 26, 2011 Jim Dyer, **Nancy Grosso**, Reed Harris, John Green, **Greg Murphy**, J.R. Flanders, and Rich Landis

Conceptual Site Model (CSM)

- Representation of an environmental system
- Presents hypotheses about the most important processes that control the behavior and fate of a substance from sources to receptors
- Complexity of the CSM is determined by the complexity of the site and the complexity of the behavior of the substance of interest

Uses of CSM - A Tool to:

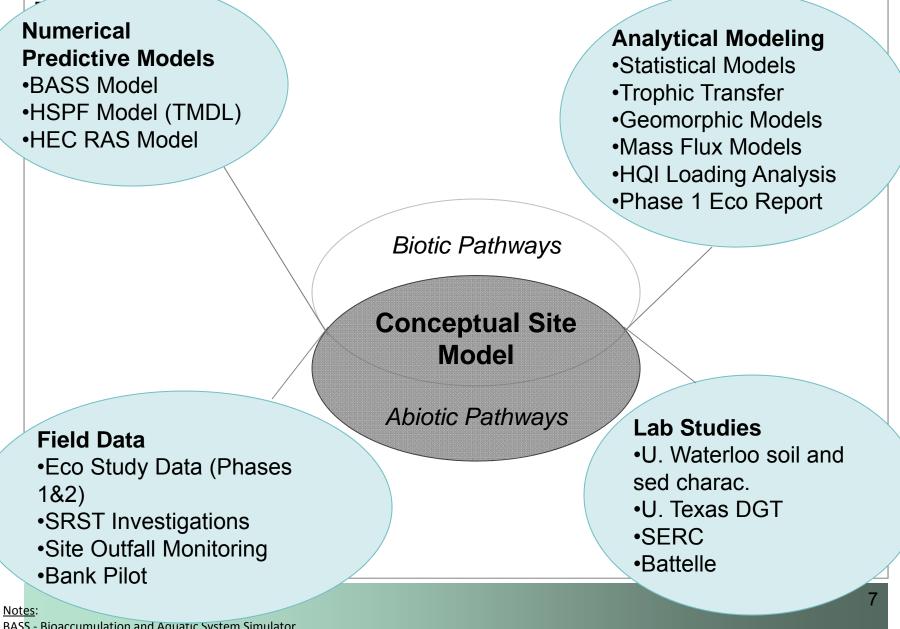
- Integrate all site data and understanding of the system
- Identify critical transport and exposure pathways
- Test and refines hypotheses through site characterization and field testing to define complete pathways
- Serve as a basis for more detailed evaluation on different spatial and temporal scales
- Identify data gaps and R&D needs
- Identify potential remedial strategy options and evaluate potential effectiveness
- Update what is understood about the system after actions are implemented to reduce receptor exposure to contaminants
- Communicate the important processes of the system among:
 - Scientists
 - Stakeholders
 - Decision-makers

South River CSM Objectives

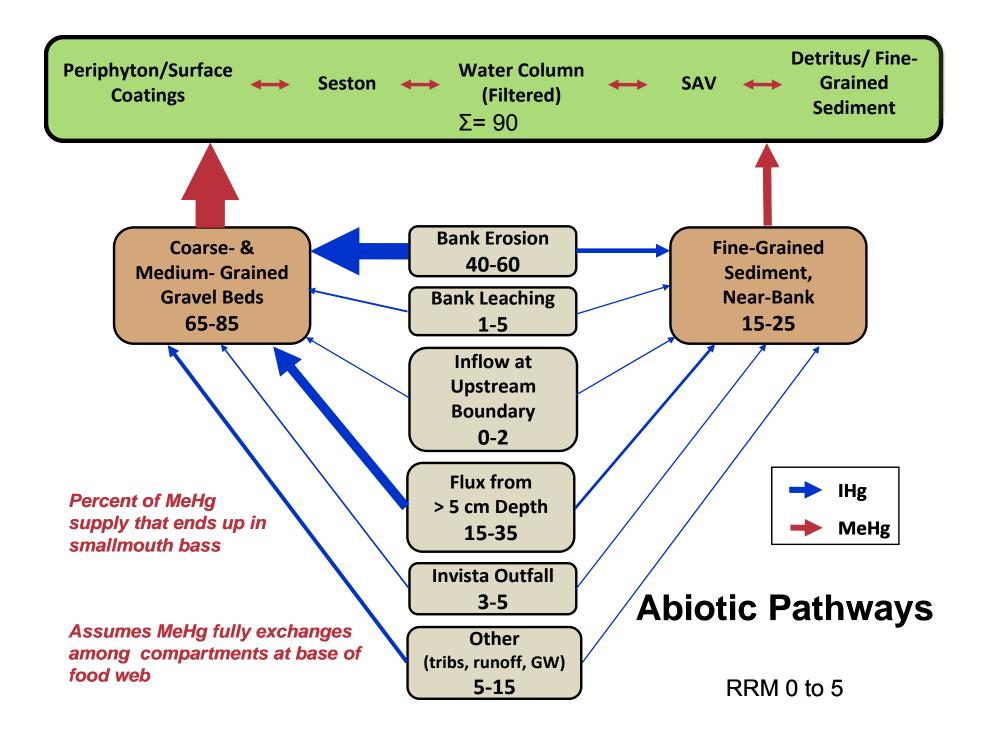
- Identify Hg sources and pathways that are primarily responsible for elevated Hg levels in smallmouth bass in the South River
- Identify specific pathways that are feasible to interrupt to effectively reduce Hg levels in smallmouth bass

South River CSM Study Approach

- Initial focus on aquatic environment
- Begin with baseline flow conditions, annual basis, RRM 0 to 5
 - Includes Invista outfalls
 - Includes 2 Eco Study areas
 - Mass loading to surface water increases significantly
 - Hg concentrations in biota increase significantly
 - Bank stabilization pilot part of this reach
 - Encompasses 3 NRDA reaches
- Focus on Hg sources and pathways leading to smallmouth bass as the receptor



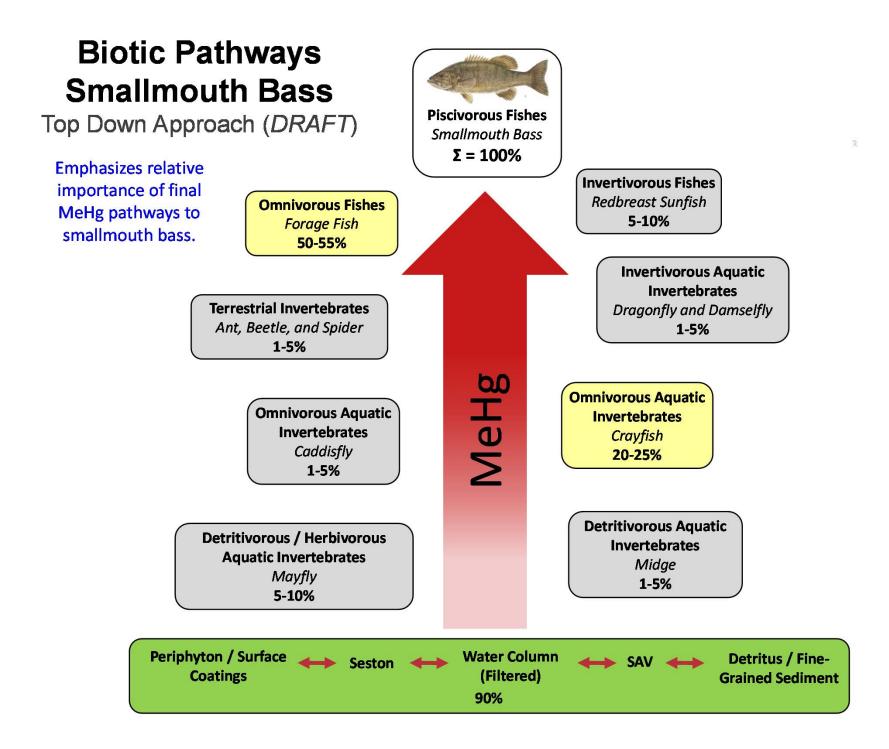
Update on Team Activities – Response to Expert Panel Comments


- Two-day working meeting (+ follow-up meetings)
 - Refine Quantitative CSM
 - Document lines of evidence that support the CSM (matrix)
 - Document calculation bases and data input for CSM
 - Develop bibliography for CSM
 - Begin report outline
 - Develop schematic of Hg movement in environment

The SR CSM integrates South River data and other model results

BASS - Bioaccumulation and Aquatic System Simulator

Document Data Sources for Abiotic Pathways


Hg Sources	Data / References
<u>Tributaries</u>	Eco Study Data (April/May/June 2008); Calculated Daily Mercury Budget for South River (Dyer and Flanders, revised 4/2011)
<u>Groundwater</u>	Genicom Facility / Schifflett Farm Final Soil, Groundwater, and Surface Water assessment report, Waynesboro, VA (USEPA, 2007); Bank stabilization pilot data and monitoring report (URS, 2011); Comprehensive RFI Report Former DuPont Waynesboro Site (URS, 2009); Report on Groundwater at Basic Park (Turner & Jensen, 2006)
Floodplain Runoff	Mercury floodplain study and analysis (VA DEQ, 2008); Phase 1 Eco Study Report (URS, 2006)
Invista Plant Outfalls	Stormwater outfall monitoring data collected 2003-2006 as part of RCRA Corrective Action permit; Mercury Loading to South River from Plant Outfalls-Analysis of Base Flow and Storm Flow Data (Dyer, Nov. 2007); TMDL Development for Mercury in the South River, South Fork Shenandoah River, and Shenandoah River, Virginia (USGS, 2009)
Inflow at Upstream Boundary	Phase I & II Eco Study surface water monitoring data (URS, 2005-2010); Conceptual Site Model for Mercury in the South River, VA, (HydroQual, Inc., 2009)
Bank Erosion	Bank Erosion Estimates based on Aerial Photography Analysis, Erosion Pins and Land-based LiDAR Surveys (Pizzuto et al.,2006-2011)
Bank Leaching	Sediment-column leaching data and flux estimates for bank soils (University of Waterloo, 2010-2011)
Flux from > 5 cm Depth	Benthic flux chamber data (Landis, 2006-2008), Mass Transfer analytical models to predict flux based on pore water data (Dyer and Landis, 2009-2011)

Example: Key Observations / Assumptions for Abiotic Pathways in the CSM*

- Key Assumption: Inorganic Hg sources in the outfall, tributaries, in bank soils, GW and others are assumed to be equally available for methylation
- Key Observation: Direct loading of MeHg from floodplain soil is small compared to MeHg production within the wetted perimeter of the river
- Key Assumption: MeHg production in the river is based on bed area and measured pore water concentrations (bed area x pore water concentration)
 - Coarse- and medium-grained gravel beds comprise ~85% of river bed
 - Median FIHg Pore Water concentrations for sand/silt substrates are 1X-4X median pore water concentrations for cobble/gravel substrates

south river SCIENCE TEAM

*See Matrix for more detail

Data Sources for Biotic Pathways

Biotic Pathway Components	Data / References
MeHg in Biological / Physical Media	 South River Science Team database containing MeHg information from various programs
MeHg Uptake Pathways	 Phase II Ecological Study - BASS model outputs for smallmouth bass, redbreast sunfish, and common shiner Phase II Ecological Study - <i>In situ</i> Hg uptake study for mayfly nymph and crayfish
Dietary Composition	 Phase II Ecological Study - Fish stomach content analyses for smallmouth bass, redbreast sunfish, and common shiner Snyder and Hendricks (1995) Merritt et al. (2008)
Assimilation Efficiency	 Wiley and Wike (1986) Shuter and Post (1990) Headon et al. (1996) Trebitz (1997) Duffy (1998) Karimi et al. (2007)

Example: Approach / Key Assumptions for Biotic Pathways in the CSM*

- Key Approach: Top down approach emphasizes relative importance of final MeHg pathways to smallmouth bass; while bottom up approach emphasizes relative importance of initial MeHg pathways from basal resources to aquatic consumers.
 - Multiple direct and indirect links between various trophic compartments; must consider both approaches
- Key Assumption: Differences between dietary and aqueous treatments observed during *in situ* uptake experiment are representative of true conditions.
 - Mayfly nymph uptake was approximately 55% and 45% for dietary and aqueous treatments, respectively
 - Crayfish uptake was approximately 66% and 34% for dietary and aqueous treatments, respectively

*See Matrix for more detail

Next Steps

- Develop Schematic "Mercury Movement through the South River"
- Refine CSM by incorporating results of 2011 efforts
 - Hg loading from eroding banks
 - Substrate mapping
- Develop Aquatic CSM under Storm conditions
- Develop Aquatic CSM for RRM 5 to 11
- Develop Floodplain CSM

Implications of Storm Event on <u>Abiotic</u> Portion of CSM

- Key issue is the potential for a major storm to mobilize Hg and induce a newly contaminated state
 - A storm may mobilize previously unavailable Hg via
 - redistribution of river bed sediment
 - loading of floodplain Hg to river
 - increased riverbank erosion and collapse
 - Above may be partially offset by introduction of clean sediment from upstream and reduced erosion of contaminated soil from stabilized river banks
- Floodplain runoff contribution likely to increase
- Need to consider impact of wet-dry cycling on methylation in banks and on floodplain

Implications of Storm Event on <u>Biotic</u> Portion of CSM

- Wet-dry cycling and inundation-induced methylation impact on terrestrial biota
- Potential change in aquatic invertebrate biomass and community structure; though evidence that effects are short-term in duration (ref. Hendricks et al. 1995)
 - shift in fish food habits; subsequent bioenergetics & mercury uptake
 - change in mercury flux to terrestrial food web
- Change in mercury bioavailability for aquatic invertebrate uptake
 - change in mercury uptake by fish
 - change in mercury flux to terrestrial food web
- Effect on fish reproduction
 - shift in fish food habits; subsequent bioenergetics & mercury uptake

Reporting for the CSM

- Executive Summary (10 to 20 pp.)
- Figure 1 Abiotic Pathways
- Figure 2 Biotic Pathways
- Figure 3 Schematic of Mercury Movement in the South River
 - Abiotic CSM Lines of Evidence and Supporting Documentation
 - Biotic CSM (BASS Model) Supporting information
 - Bibliography
 - Summary of Statistical Modeling Efforts and Major Conclusions
 - Mercury flux and water budget calculations
 - Previous SR Conceptual Models

