South River Remedial Options Program

South River Science Team Meeting
July 15, 2008

South River Remedial Options Program (ROP)

Proposed program wherein we will review, evaluate and test promising remediation strategies for the South River

Current Site Understanding

- Characterization of sources and loadings ongoing.
- Working hypotheses and conceptual system model are continuously updated and refined.

>Evaluating options now

- Optimization of current investigations
- Initiation of new investigations to help refine the toolbox of alternatives.

South River Remedial Action Objectives

Reduce fish tissue Hg levels to concentrations that would allow consumption by humans

Ensure protection of aquatic and terrestrial ecology with respect to Hg exposure

Remediation Challenge

Based on multiple possible sources and pathways of mercury, the following initial questions were posed by the team:

- What can be done to reduce introduction of Hg-bearing solids into the aquatic system?
 - Grosso, Landis, Liberati, Morrison, Flanders
- What can be done to reduce dissolved mercury in water?
 - Turner, Sherrier, Dyer, Jensen
- What can be done to inhibit production of methyl mercury?
 - Flanders, Mack and Turner
- What can be done to reduce overall the effect of Hg on the biological system and food web?
 - Dyer, Berti, Morrison

Broadest Range of Remedies - Brainstorm Results

Baseline Condition

Monitored Natural Recovery

Engineering and Treatment

- Physical Actions
 - Hydraulic modification / stage controls
 - Flood control measures
 - Filling of ditches / backwaters
 - Management of large woody debris
 - Isolation of eroding banks
 - Soil covers
 - Capping of storage deposits (permeable, impermeable, reactive)
 - Sediment traps to treat
 - Removal

Engineering and Treatment (cont.)

- Treatment
 - Increase sorption of Hg (GAC, XB-1, clay, humus, bauxite)
 - Addition of Hg-binding ligands or ion exchange reagents
 - Phytoremediation
 - Ultra filtration
 - Thermal desorption

Administrative Controls

- Fish exchange program
- BMPs for cattle / erosion control
- Floodplain conservation easement
- Providing alternate food supply for fish

CAUTION: NONE OF THESE HAVE BEEN VETTED FOR EFFECTIVENESS OR FEASIBILITY

Considerations for Mercury Remediation

Effective management of Mercury in the environment largely unproven

Mercury is the most challenging of all potential contaminants

- Real threat of unintended consequences
- Risk of actions, duration and tradeoffs

South River is relatively high energy and dynamic – delivery of treatment and permanence of actions major considerations

Recommended Approach:

- Test thoroughly at bench scale
- Field pilot cautiously
- Define success

Initial Activities – SR ROP

Paper Studies / Literature Review:

- Effects Selenium on biological uptake / metabolism of mercury in biota (Flanders)
- Case Study Review: full scale and pilot studies of mercury remediation sites / key learnings (Turner)
- State of the science for water treatment and soil stabilization (Dyer)
- Effect of nutrients on a Hg-contaminated aquatic system (Flanders)
- Food Web Management as an effective strategy (Morrison with Newman)

Initial Activities – SR ROP

Laboratory Testing / University Studies:

- Bench scale testing of activated carbon and XB-1 as effective Hg binding agents in soil and sediment (Exponent / University of Maryland – Baltimore County / Smithsonian)
- Hg Characterization: speciation in soils and sediments, effects of wetting and drying and testing of amendments (Waterloo University)
- Assessment of bioavailability of mercury and methylation potential (Rutgers University)
- Characterizing water chemistry of the 001 outfall (2008) and treatment alternatives analysis (2009) (DuPont Engineering)

Field Pilot

Bank Restoration Pilot

