

Goals of the TMDL Project

- Collect data characterizing mercury (Hg) and methylmercury (MeHg) fluxes and production rates in the South River watershed.
- Develop numerical models for simulating surface water flows and Hg cycling and transport.
 - Using the surface water and contaminant transport models, calculate maximum allowable mercury loads (TMDL) from all point and non-point sources.

Total Hg in South River water column

Water Column Hg Concentration – Particulate Phase (ng/L)

Suspended Sediment Concentrations

Hg Concentration on Suspended Sediment (ppm)

Hydrologic Modeling Framework - HSPF

EXPLANATION

- SURI–Surface runoff from impervious areas
- SURO–Surface runoff from pervious areas
- IFWO–Interflow
- AGWO–Active groundwater flow (base flow)
- RCHRES–Stream reach or reservoir segment IVOL–Inflow volume OVO-Outflow volume SURI–Surface runoff from impervious areas SURO–Surface runoff from pervious areas

Sub-Basin Delineation

Within each subbasin, transport is handled by ~50 different hydrologic response units (HRU) that allow for differences in land use, climatic stresses, and hydrologic parameters such as slope

Hourly Streamflow (cfs) – Harriston

Flow Duration Curve – Harriston (01627500)

Suspended Sediment Modeling

Goal: Simulate SSC (mg/L) in the river every hour

Purpose: Improve subsequent simulation of mercury transport in the water column

HSPF Sediment Production

ce for a changi

Suspended Sediment Modeling

Steps: Develop hourly time-series data for 'Observed' SSC

Parameterize HSPF watershed model

Adjust HSPF model parameters so that simulated SSC matches 'Observed' SSC

Developing hourly times series data for 'Observed' SSC

Available Data:

Grab Sample Data -USGS (n=78) SSC Using 1.5 μm filter DEQ (n=148) TSS Using 0.7 μm filter (used for verification)

Turbidity Data correlates strongly with SS 15-minute data from 2005-2007 missing about 10% of period

Discharge Data – correlates strongly with SS 15-minute streamflow (cfs) data

SSC Regression

- Use Linear Regression Model with Independent variables based on Q and Turbidity
- Data from all 3 stations is lumped after adjusting Q for drainage area
- The best multiple regression model is selected from many different potential models based on the following statistics: Adjusted R² (R²_a) - higher is better Mallow's Cp (Cp) - lower is better Variance Inflation Factor (VIF) - lower is better

Statistical Analysis

			_	_				Gray indicates variable used in regression			
Model #	Р	MSE	R ²	Adj R ²	Ср	VIF	Qa	Turb	Qa increase	Qa _{slope}	Use?
1	1	1622.9	0.744	0.744	101.9	-					No
2	1	888.2	0.896	0.895	22.3	-					No
3	1	5002.6	0.434	0.426	468.2	-					No
4	1	8239.8	0.035	0.023	819.0	-					No
5	2	897.2	0.896	0.894	24.0	3.908					No
6	2	706.3	0.918	0.916	3.5	1.002					Yes
7	2	1115.3	0.871	0.868	47.3	1.002					No/Yes
8	2	857.4	0.901	0.898	19.7	1.689					No
9	3	804.2	0.908	0.905	14.9	3.908					No
10	3	1123.6	0.872	0.867	48.6	1.378					No
11	3	701.2	0.920	0.917	4.0	3.908					No
12	4	705.2	0.920	0.916	5.4	3.908	,				No

SSC Hourly Timeseries - Dooms

SSC Hourly Timeseries - Waynesboro

Site-Specific BAF Approach

BAF = Fish [Hg] / Water [Hg]

Target Water [Hg] = Target Fish [Hg] / BAF

South River Monitoring Sites

Land Use, Precipitation, Meteorology

HSPF Susp. Sed. Budgeting

Figure 47: Flow diagram of inorganic sediment fractions in the SEDTRN section of the RCHRES Application Module

